BAB I
PENDAHULUAN
Rasa ingin tahu (curiosity) selalu muncul ketika kita dihadapkan pada alam semesta yang di dalamnya mengandung banyak misteri. Curiosity manusia dapat mengubah “nothing“ menjadi “know a lot of thing”. Rasa ingin tahu jugalah yang memunculkan berbagai penelitian serta pengujian dari hipotesa akhir dan bila hal itu terbukti kebenarannya maka akan terbentuk suatu bidang ilmu.
Curiosity tidak hanya tertanam dalam benak pikiran ilmuan dan peneliti namun juga tertanam subur pada anak-anak. Mereka seringkali menanyakan sesuatu yang tak disangka-sangka dan kita kebablakan untuk menjawabnya. Yang perlu diingat adalah jangan sekali-kali memberikan jawaban tanpa pengetahuan karena jawaban anda akan selalu diingat dengan kuat.
Curiosity tercerdas dimiliki oleh para ilmuan astronom dahulu. Mereka sangat terangsang otaknya dengan melihat sesuatu yang sangat sulit dijangkau jasmani. Namun berkat pemikirannya sekarang kita dapat mengetahui tentang alam semesta.
BAB II
PEMBAHASAN
A. DEFINISI ALAM SEMESTA, GALAKSI, DAN TATA SURYA
Alam Semesta
Pengertian alam semesta mencakup tentang mikrokosmos dan makrokosmos. Mikrokosmos adalah benda-benda yang mempunyai ukuran sangat kecil, misalnya atom, elektron, sel, amuba, dan sebagainya. Sedang makrokosmos adalah benda-benda yang mempunyai ukuran yang sangat besar, misalnya bintang, planet, dan galaksi.
Konsep pemikiran manusia tentang pusat universe atau alam semesta sangat radikal. Awalnya para ilmuan astronom menetapkan bahwa manusialah yang sebagai pusat, yang diberi nama teori egosentris. Setelah itu mereka menetapkan bumi yang menjadi pusat yang ditokohi oleh Cladius Ptolemeus. Teori ini dikenal dengan geosentris. Namun setelah itu Nicolas Copernicus mengungkap teori baru di mana matahari dijadikan pusat alam semesta, heliosentris. Namun saat ini mereka baru menyadari bahwa teoti tersebut lebih cocok digelayutkan pada tata surya. Dan tata surya hanyalah sebagian dari galaksi, dan galaksi adalah satu kumpulan bintang dari banyak kumpulan bintang di alam semesta.
Galaksi
Langit dihiasi bintang-bintang yang jumlahnya tak terhitung, yang bisa diamati dengan mata telanjang maupun teropong bintang. Bintang-bintang berkumpul dalam suatu gugusan, meskipun antar-bintang berjauhan di angkasa. Dari penjelasan Ismail al-Juwasy tersebut dapat kita katakan bahwa galaksi tak ubahnya bak sekumpulan anak ayam yang tak mungkin untuk dipisahkan dari induknya. Di mana ada anak ayam di situ pasti ada induknya. Sama halnya bintang-bintang di angkasa sana mereka tak mungkin gemerlap sendirian tanpa disandingi dengan bintang lainnya.
Galaksi yang sering kita dengar adalah Bimasakti atau milky way. Kalau kita cermati agak aneh nama milky way tersebut karena dari benda angkasa luar diumpamakan dengan susu. Namun dari keanehan tersebut terdapat keunikan, yakni bintang bertebaran di langit pada malam hari seperti susu yang tercecer di langit. Galaksi kita berbentuk spiral, dapat kita samakan dengan lingkaran obat nyamuk jika dilihat dari atas dan seperti gasing bila dilihat dari samping. Galaksi kita tidak sebundar lingkaran namun berbentuk elips. Hal ini dibuktikan dengan ukannya yang memiliki panjang sekitar 100 tahun cahaya dan lebar 10 tahun cahaya dan tata surya kita berada 30 tahun cahaya dari pusat galaksi.
Selain galaksi Bimasakti kita juga dapat melihat beberapa galaksi dengan mata telanjang ataupun dengan alat. Yang diungkap oleh para ilmuan yakni galaksi Andromeda, Awan Megallianic Besar dan Awan Megallanic Kecil. Galaksi Andromeda lebih besar daripada Milky way.
Tata Surya
Tata surya terdiri dari matahari, Sembilan planet dan berbagai benda langit seperti satelit, komet, dan asteroid. Tata surya tak lebih hanyalah gugusan kecil dari benda-benda langit dan satu bintang. Tata surya adalah bagian kecil dari galaksi.
Kita kenal dengan sembilan planet mungkin ketika sekolah dasar, dari sebilan planet tersebut terbagi dua bagian yaitu planet dalam dan planet luar. Planet dalam adalah planet yang dekat dengan matahari yang terdiri dari Merkurius, Venus, Bumi, dan Mars. Sedangkan Yupiter, Saturnus, Uranus, Neptunus, dan Pluto –yang sekarang tereliminasi– termasuk planet luar.
Tata Surya adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut Matahari dan semua objek yang terikat oleh gaya gravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil/katai, 173 satelit alami yang telah diidentifikasi, dan jutaan benda langit (meteor, asteroid, komet) lainnya.
Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet bagian luar, dan di bagian terluar adalah Sabuk Kuiper dan piringan tersebar. Awan Oort diperkirakan terletak di daerah terjauh yang berjarak sekitar seribu kali di luar bagian yang terluar.
B. TEORI ASAL MULA ALAM SEMESTA
Teori Letusan Hebat
Berbagai teori tentang jagad raya membentuk suatu bidang studi yang dikenal sebagai kosmologi. Einstein adalah ahli kosmologi modern pertama. Tahun 1915 ia menyempurnakan teori umumnya tentang relativitas, yang kemudian diterapkan pada pendistribusian zat di luar angkasa. Pada tahun 1917 secara matematik ditentukan bahwa tampaknya ada massa bahan yang hampir seragam yang keseimbangannya tak tentu antara kekuatan tarik gravitasi dan kekuatan olek atau kekuatan dorong kosmik lain yang tak dikenal.
Pada tahun 1922 seorang ahli fisika Rusia muncul dengan pemecahan soal itu secara lain, yang mengatakan bahwa kekuatan tolak tidak berperan bahkan jagad raya terus meluas dan seluruh partikel terbang saling menjauhi dengan kecepatan tinggi. Karena kekuatan tarik gravitasi, perluasan itu terus melambat. Sebelumnya, partikel-partikel itu telah bergerak keluar bahkan lebih cepat lagi. Dalam model jagat raya ini dahulu perluasan mulai pada saat yang unik yang disebut “letusan hebat”.
Teori letusan hebat rupanya begitu berlawanan dengan pengetahuan astronomi zaman sekarang, yang mula-mula sedikit menarik perhatian. Akhirnya sebanyak bintang dalam galaksi Bimasakti bukannya saling menjauhi satu sama lain, tetapi malahan berjalan dalam orbit sirkular mengelilingi wilayah pusatnya yang padat. Akan tetapi, pada tahun 1929 Edwin Hubble, ketika itu ahli astronomi di Observatorium Mount Wilson, mengemukakan bahwa berbagai galaksi yang telah diamatinya sebenarnya menjauhi kita, dan menjauhi yang lain, dengan kecepatan sampai beberapa ribu kilometer per-detik.
Rupanya galaksi-galaksi ini, seperti halnya Bimasakti kita, menjaga keutuhan bentuk internalnya selama waktu yang panjang. Galaksi-galaksi itu secara sendiri-sendiri mengarungi angkasa raya, kira-kira sebagain unit atau partikel yang bergerak mengarungi ruang angkasa. Teori Einstein dapat diterapkan pada berbagai galaksi, sebagai ganti bintang-bintang.
Teori Keadaan Tetap
Kalau kita kembali ke tahun 1948, tidaklah ditemukan informasi yang cukup untuk menguji teori letusan hebat itu. Ahli Astronomi Inggris Fred Hoyle dan beberapa ahli astro-fisika Inggris mengajukan teori yang lain, teori keadaan tetap yang menerangkan bahwa jagat raya tidak hanya sama dalam ruang angkasa –asas kosmologi- tetapi juga tak berubah dalam waktu asas kosmologi yang sempurna. Jadi, asas kosmologi diperluas sedemikian rupa sehingga menjadi “sempurna” atau “lengkap” dan tidak bergantung pada peristiwa sejarah tertentu. Teori keadaan tetap berlawanan sekali dengan teori letusan hebat.
Dalam teori kedua, ruang angkasa berkembang menjadi lebih kosong sewaktu berbagai galaksi saling menjauh. Dalam teori keadaaan tetap, kita harus menerima bahwa zat baru selalu diciptakan dalam ruang angkasa di antara berbagai galaksi, sehingga galaksi baru akan terbentuk guna menggantikan galaksi yang menjauh. Orang sepakat mengatakan bahwa zat baru itu ialah hydrogen, yaitu sumber yang menjadi asal usul bintang dan galaksi.
Penciptaan zat berkesinambungan dari ruang angkasa yang tampaknya kosong itu diterima secara skeptis oleh para ahli, sebab hal ini rupanya melanggar salah satu hukum.
C. TEORI TERBENTUKNYA TATA SURYA
Melihat kenyataan bahwa planet-planet bergerak mengelilingi matahari dengan orbitnya yang berebentuk elips dengan arah peredaran yang sama yaitu berlawanan arah jarum jam jika melihatnya dari kutub utara, ternyata arah revolusi planet-planet dan satelitnya yaitu arah negative. Ini berlawanan dengan yang kita amati di bumi, peredaran harian benda-benda langit seperti matahari, bulan dan bintang berarah positf seperti arah peredaran harian matahari yang terbit di timur lalu naik dan kemudian terbenam di barat. Adanya realitas yang demikian membuat para ahli astronomi berkesimpulan bahwa tata surya terbentuk dari material yang berputar dengan arah negative, hal ini kemudian memunculkan beberapa teori tentang terjadinya tata surya sebagai berikut:
1. Teori Nebule atau teori kabut, yang dikemukakan oleh Immanuel Kant (1749-1827) dan Piere Simon de Laplace (1796).
Matahari dan planet berasal dari sebuah kabut pijar yang berpilin di dalam jagat raya, karena pilinannya itu berupa kabut yang membentuk bulat seperti bola yang besar, makin mengecil bola itu makin cepat putarannya. Akibatnya bentuk bola itu memepat pada kutubnya dan melebar di bagian equatornya bahkan sebagian massa dari kabut gas menjauh dari gumpalan intinya dan membentuk gelang-gelang di sekeliling bagian utama kabut itu, gelang-gelang itu kemudian membentuk gumpalan padat inilah yang disebut planet-planet dan satelitnya. Sedangkan bagian tengah yang berpijar tetap berbentuk gas pijar yang kita lihat sekarang sebagai matahari.
Teori kabut ini telah dipercaya orang selama kira-kira 100 tahun, tetapi sekarang telah benyak ditinggalkan karena:
(1) tidak mampu memberikan jawaban-jawaban kepada banyak hal atau masalah di dalam tata surya kita dan
(2) karena munculnya banyak teori baru yang lebih memuaskan.
2. Teori Planetesimal, Thomas C. Chamberlin (1843-1928) seorang ahli geologi dan Forest R. Moulton (1872-1952) seorang astronom.
Disebut Planetesimal yang berarti planet kecil karena planet terbentuk dari benda padat yang memang telah ada. Matahari telah ada sebagai salah satu dari bintang-bintang yang banyak, pada satu waktu ada sebuah bintang yang berpapasan pada jarak yang tidak terlalu jauh akibatnya terjadi pasang naik antara matahari dan bintang tadi. Pada waktu bintang itu menjauh sebagian massa dari matahari itu jatuh kembali ke permukaan matahari dan sebagian lain berhamburan di sekeliling matahari inilah yang disebut dengan planetesimal yang kelak kemudian menjadi planet-planet yang beredar pada orbitnya dan mengelilingi matahari.
3. Teori Pasang Surut, Sir James Jeans (1877-1946) dan Harold Jeffreys (1891) keduanya dari Inggris, teori ini hampir sama dengan teori Planetesimal.
Setelah bintang itu berlalu dengan gaya tarik bintang yang besar pada permukaan matahari terjadi proses pasang surut seperti peristiwa pasang surutnya air laut di bumi akibat gaya tarik bulan. Sebagian massa matahari itu membentuk cerutu yang menjorok kearah bintang itu mengakibatkan cerutu itu terputus-putus membentuk gumpalan gas di sekitar matahari dengan ukuran yang berbeda-beda, gumpalan itu membeku dan kemudian membentuk planet-planet.
Teori ini menjelaskan mengapa planet-planet di bagian tengah seperti Yupiter, Saturnus, Uranus dan Neptunus merupakan planet raksasa sedangkan di bagian ujungnya merupakan planet-planet kecil. Kelahiran kesembilan planet itu karena pecahan gas dari matahari yang berbentuk cerutu itu maka besarnya planet-planet iti berbeda-beda yang terdekat dan terjauh besar tetapi yang di tengah lebih besar lagi.
4. Teori Awan Debu, dikemukakan oleh Carl von Weizsaeker (1940) kemudian disempurnakan oleh Gerard P Kuiper (1950).
Tata surya terbentuk dari gumpalan awan gas dan debu. Gumpalan awan itu mengalami pemampatan, pada proses pemampatan itu partikel-partikeldebu tertarik ke bagian pusat awan itu membentuk gumpalan bola dan mulai berpilin dan kemudian membentuk cakram yang tebal di bagian tengah dan tipis di bagian tepinya. Partikel-partikel di bagian tengah cakram itu saling menekan dan menimbulkan panas dan berpijar, bagian inilah yang kemudian menjadi matahari. Sementara bagian yang luar berputar sangat cepat sehingga terpecah-pecah menjadi gumpalan yang lebih kecil, gumpalan kecil ini berpilin pula dan membeku kemudian menjadi planet-planet.
5. Teori Bintang Kembar
Teori ini hampir sama dengan teori planetesimal.Dahulu matahari mungkin merupakan bintang kembar,kemudian bintang yang satu meledak menjadi kepingan-kepingan.Karena ada pengaruh gaya gravitasi bintang,maka kepingan-kepingan yang lain bergerak mengitari bintang itu dan menjadi planet-planet.Sedangkan bintang yang tidak meledak menjadi matahari.
6. Teori Ledakan (Big Bang), George Gamow, Alpher dan Herman.
Alam pada saat itu belum merupakan materi tetapi pada suatu ketika berubah menjadi materi yang sangat kecil dan padat, massanya sangat berat dan tekanannya besar, karena adanya reaksi inti kemudian terjadi ledakan hebat. Massa itu kemudian berserak dan mengembang dengan sangat cepat menjauhi pusat ledakan dan membentuk kelompok-kelompok dengan berat jenis yang lebih kecil dan trus bergerak, menjauhi titik pusatnya.
Dentuman besar itu terjadi ketika seluruh materi kosmos keluar dengan kerapatan yang sangat besar dan suhu yang sangat tinggi dari volume yang sangat kecil. Alam semesta lahir dari singularitas fisis dengan keadaan ekstrem. Teori Big Bang ini semakin menguatkan pendapat bahwa alam semesta ini pada awalnya tidak ada tetapi kemudian sekitar 12 milyar tahun yang lalu tercipta dari ketiadaan.
Pada tahun 1948, Gerge Gamov muncul dengan gagasan lain tentang Big Bang. Ia mengatakan bahwa setelah pembentukan alam semesta melalui ledakan raksasa, sisa radiasi yang ditinggalkan oleh ledakan ini haruslah ada di alam. Selain itu, radiasi ini haruslah tersebar merata di segenap penjuru alam semesta. Bukti yang ’seharusnya ada’ ini pada akhirnya diketemukan. Pada tahun 1965, dua peneliti bernama Arno Penziaz dan Robert Wilson menemukan gelombang ini tanpa sengaja. Radiasi ini, yang disebut ‘radiasi latar kosmis’, tidak terlihat memancar dari satu sumber tertentu, akan tetapi meliputi keseluruhan ruang angkasa. Demikianlah, diketahui bahwa radiasi ini adalah sisa radiasi peninggalan dari tahapan awal peristiwa Big Bang. Penzias dan Wilson dianugerahi hadiah Nobel untuk penemuan mereka.
Pada tahun 1989, NASA mengirimkan satelit COBE (Cosmic Background Explorer). COBE ke ruang angkasa untuk melakukan penelitian tentang radiasi latar kosmis. Hanya perlu 8 menit bagi COBE untuk membuktikan perhitungan Penziaz dan Wilson. COBE telah menemukan sisa ledakan raksasa yang telah terjadi di awal pembentukan alam semesta. Dinyatakan sebagai penemuan astronomi terbesar sepanjang masa, penemuan ini dengan jelas membuktikan teori Big Bang.
Bukti penting lain bagi Big Bang adalah jumlah hidrogen dan helium di ruang angkasa. Dalam berbagai penelitian, diketahui bahwa konsentrasi hidrogen-helium di alam semesta bersesuaian dengan perhitungan teoritis konsentrasi hidrogen-helium sisa peninggalan peristiwa Big Bang. Jika alam semesta tak memiliki permulaan dan jika ia telah ada sejak dulu kala, maka unsur hidrogen ini seharusnya telah habis sama sekali dan berubah menjadi helium.
Segala bukti meyakinkan ini menyebabkan teori Big Bang diterima oleh masyarakat ilmiah. Model Big Bang adalah titik terakhir yang dicapai ilmu pengetahuan tentang asal muasal alam semesta. Begitulah, alam semesta ini telah diciptakan oleh Allah Yang Maha Perkasa dengan sempurna tanpa cacat.
C. TERBENTUKNYA BINTANG
Bintang merupakan benda langit yang memancarkan cahaya. Terdapat bintang semu dan bintang nyata. Bintang semu adalah bintang yang tidak menghasilkan cahaya sendiri, tetapi memantulkan cahaya yang diterima dari bintang lain. Bintang nyata adalah bintang yang menghasilkan cahaya sendiri. Secara umum sebutan bintang adalah objek luar angkasa yang menghasilkan cahaya sendiri (bintang nyata).
Menurut ilmu astronomi, definisi bintang adalah:
“ Semua benda masif (bermassa antara 0,08 hingga 200 massa matahari) yang sedang dan pernah melangsungkan pembangkitan energi melalui reaksi fusi nuklir.
”
Oleh sebab itu bintang katai putih dan bintang neutron yang sudah tidak memancarkan cahaya atau energi tetap disebut sebagai bintang. Bintang terdekat dengan Bumi adalah Matahari pada jarak sekitar 149,680,000 kilometer, diikuti oleh Proxima Centauri dalam rasi bintang Centaurus berjarak sekitar empat tahun cahaya.
Bintang terbentuk di dalam awan molekul; yaitu sebuah daerah medium antarbintang yang luas dengan kerapatan yang tinggi (meskipun masih kurang rapat jika dibandingkan dengan sebuah vacuum chamber yang ada di Bumi). Awan ini kebanyakan terdiri dari hidrogen dengan sekitar 23–28% helium dan beberapa persen elemen berat. Komposisi elemen dalam awan ini tidak banyak berubah sejak peristiwa nukleosintesis Big Bang pada saat awal alam semesta.
Gravitasi mengambil peranan sangat penting dalam proses pembentukan bintang. Pembentukan bintang dimulai dengan ketidakstabilan gravitasi di dalam awan molekul yang dapat memiliki massa ribuan kali Matahari. Ketidakstabilan ini seringkali dipicu oleh gelombang kejut dari supernova atau tumbukan antara dua galaksi. Sekali sebuah wilayah mencapai kerapatan materi yang cukup memenuhi syarat terjadinya instabilitas Jeans, awan tersebut mulai runtuh di bawah gaya gravitasinya sendiri.
Berdasarkan syarat instabilitas Jeans, bintang tidak terbentuk sendiri-sendiri, melainkan dalam kelompok yang berasal dari suatu keruntuhan di suatu awan molekul yang besar, kemudian terpecah menjadi konglomerasi individual. Hal ini didukung oleh pengamatan dimana banyak bintang berusia sama tergabung dalam gugus atau asosiasi bintang.
Begitu awan runtuh, akan terjadi konglomerasi individual dari debu dan gas yang padat yang disebut sebagai globula Bok. Globula Bok ini dapat memiliki massa hingga 50 kali Matahari. Runtuhnya globula membuat bertambahnya kerapatan. Pada proses ini energi gravitasi diubah menjadi energi panas sehingga temperatur meningkat. Ketika awan protobintang ini mencapai kesetimbangan hidrostatik, sebuah protobintang akan terbentuk di intinya. Bintang pra deret utama ini seringkali dikelilingi oleh piringan protoplanet. Pengerutan atau keruntuhan awan molekul ini memakan waktu hingga puluhan juta tahun. Ketika peningkatan temperatur di inti protobintang mencapai kisaran 10 juta kelvin, hidrogen di inti 'terbakar' menjadi helium dalam suatu reaksi termonuklir. Reaksi nuklir di dalam inti bintang menyuplai cukup energi untuk mempertahankan tekanan di pusat sehingga proses pengerutan berhenti. Protobintang kini memulai kehidupan baru sebagai bintang deret utama.
Deret Utama
Bintang menghabiskan sekitar 90% umurnya untuk membakar hidrogen dalam reaksi fusi yang menghasilkan helium dengan temperatur dan tekanan yang sangat tinggi di intinya. Pada fase ini bintang dikatakan berada dalam deret utama dan disebut sebagai bintang katai.
Akhir sebuah bintang
Ketika kandungan hidrogen di teras bintang habis, teras bintang mengecil dan membebaskan banyak panas dan memanaskan lapisan luar bintang. Lapisan luar bintang yang masih banyak hidrogen mengembang dan bertukar warna merah dan disebut bintang raksaksa merah yang dapat mencapai 100 kali ukuran Matahari sebelum membentuk bintang kerdil putih. Sekiranya bintang tersebut berukuran lebih besar dari matahari, bintang tersebut akan membentuk superraksaksa merah. Superraksaksa merah ini kemudiannya membentuk Nova atau Supernova dan kemudiannya membentuk bintang neutron atau Lubang hitam.
D. TERBENTUKNYA PLANET
Sejalan dengan berkembangnya ilmu pengetahuan, pengertian istilah “planet” berubah dari “sesuatu” yang bergerak melintasi langit (relatif terhadap latar belakang bintang-bintang yang “tetap”), menjadi benda yang bergerak mengelilingi Bumi. Ketika model heliosentrik mulai mendominasi pada abad ke-16, planet mulai diterima sebagai “sesuatu” yang mengorbit Matahari, dan Bumi hanyalah sebuah planet. Hingga pertengahan abad ke-19, semua obyek apa pun yang ditemukan mengitari Matahari didaftarkan sebagai planet, dan jumlah “planet” menjadi bertambah dengan cepat di penghujung abad itu.
Selama 1800-an, astronom mulai menyadari bahwa banyak penemuan terbaru tidak mirip dengan planet-planet tradisional. Obyek-obyek seperti Ceres, Pallas dan Vesta, yang telah diklasifikasikan sebagai planet hingga hampir setengah abad, kemudian diklasifikan dengan nama baru "asteroid". Pada titik ini, ketiadaan definisi formal membuat "planet" dipahami sebagai benda 'besar' yang mengorbit Matahari. Tidak ada keperluan untuk menetapkan batas-batas definisi karena ukuran antara asteroid dan planet begitu jauh berbeda, dan banjir penemuan baru tampaknya telah berakhir.
Namun pada abad ke-20, Pluto ditemukan. Setelah pengamatan-pengamatan awal mengarahkan pada dugaan bahwa Pluto berukuran lebih besar dari Bumi, IAU (yang baru saja dibentuk) menerima obyek tersebut sebagai planet. Pemantauan lebih jauh menemukan bahwa obyek tersebut ternyata jauh lebih kecil dari dugaan semula, tetapi karena masih lebih besar daripada semua asteroid yang diketahui, dan tampaknya tidak eksis dalam populasi yang besar, IAU tetap mempertahankan statusnya selama kira-kira 70 tahun.
Pada 1990-an dan awal 2000-an, terjadi banjir penemuan obyek-obyek sejenis Pluto di daerah yang relatif sama. Seperti Ceres dan asteroid-asteroid pada masa sebelumnya, Pluto ditemukan hanya sebagai benda kecil dalam sebuah populasi yang berjumlah ribuan. Semakin banyak astronom yang meminta agar Pluto didefinisi ulang dari sebuah planet seiring bertambahnya penemuan obyek-obyek sejenis. Penemuan Eris, sebuah obyek yang lebih masif daripada Pluto, dipublikasikan secara luas sebagai planet kesepuluh, membuat hal ini semakin mengemuka. Akhirnya pada 24 Agustus 2006, berdasarkan pemungutan suara, IAU membuat definisi planet yang baru. Jumlah planet dalam Tata Surya berkurang menjadi 8 benda besar yang berhasil “membersihkan lingkungannya” (Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, Uranus dan Neptunus), dan sebuah kelas baru diciptakan, yaitu planet katai, yang pada awalnya terdiri dari tiga obyek, Ceres, Pluto dan Eris.
Planet adalah benda langit yang memiliki ciri-ciri:
• Mengorbit mengelilingi bintang atau sisa-sisa bintang;
• Mempunyai massa yang cukup untuk memiliki gravitasi tersendiri agar dapat mengatasi tekanan rigid body sehingga benda angkasa tersebut mempunyai bentuk kesetimbangan hidrostatik (bentuk hampir bulat);
• Tidak terlalu besar hingga dapat menyebabkan fusi termonuklir terhadap deuterium di intinya; dan,
• Telah "membersihkan lingkungan" (clearing the neighborhood; mengosongkan orbit agar tidak ditempati benda-benda angkasa berukuran cukup besar lainnya selain satelitnya sendiri) di daerah sekitar orbitnya
• Berdiameter lebih dari 800 km
Berdasarkan definisi di atas, maka dalam sistem Tata Surya terdapat delapan planet. Hingga 24 Agustus 2006, sebelum Persatuan Astronomi Internasional (International Astronomical Union = IAU) mengumumkan perubahan pada definisi "planet" sehingga seperti yang tersebut di atas, terdapat sembilan planet termasuk Pluto, bahkan benda langit yang belakangan juga ditemukan sempat dianggap sebagai planet baru, seperti: Ceres, Sedna, Orcus, Xena, Quaoar, UB 313. Pluto, Ceres dan UB 313 kini berubah statusnya menjadi "planet kerdil/katai."
Planet diambil dari kata dalam bahasa Yunani Asteres Planetai yang artinya Bintang Pengelana. Dinamakan demikian karena berbeda dengan bintang biasa, Planet dari waktu ke waktu terlihat berkelana (berpindah-pindah) dari rasi bintang yang satu ke rasi bintang yang lain. Perpindahan ini (pada masa sekarang) dapat dipahami karena planet beredar mengelilingi matahari. Namun pada zaman Yunani Kuno yang belum mengenal konsep heliosentris, planet dianggap sebagai representasi dewa di langit. Pada saat itu yang dimaksud dengan planet adalah tujuh benda langit: Matahari, Bulan, Merkurius, Venus, Mars, Jupiter dan Saturnus. Astronomi modern menghapus Matahari dan Bulan dari daftar karena tidak sesuai definisi yang berlaku sekarang. Sebelumnya, planet-planet anggota tata surya ada 9, yaitu Merkurius, Venus, Bumi, Mars, Jupiter/Yupiter, Saturnus, Uranus, Neptunus, dan Pluto. Namun, tanggal 26 Agustus 2006, para ilmuwan sepakat untuk mengeluarkan Pluto dari daftar planet sehingga jumlah planet di tata surya menjadi hanya 8.
Sejarah nama-nama planet
Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet (lihat tabel nama planet di bawah). Pada abad ke-6 SM, bangsa Yunani memberi nama Stilbon (cemerlang) untuk Planet Merkurius, Pyoroeis (berapi) untuk Mars, Phaethon (berkilau) untuk Jupiter, Phainon (Bersinar) untuk Saturnus. Khusus planet Venus memiliki dua nama yaitu Hesperos (bintang sore) dan Phosphoros (pembawa cahaya). Hal ini terjadi karena dahulu planet Venus yang muncul di pagi dan di sore hari dianggap sebagai dua objek yang berbeda.
Pada abad ke-4 SM, Aristoteles memperkenalkan nama-nama dewa dalam mitologi untuk planet-planet ini. Hermes menjadi nama untuk Merkurius, Ares untuk Mars, Zeus untuk Jupiter, Kronos untuk Saturnus dan Aphrodite untuk Venus.
Pada masa selanjutnya di mana kebudayaan Romawi menjadi lebih berjaya dibanding Yunani, semua nama planet dialihkan menjadi nama-nama dewa mereka. Kebetulan dewa-dewa dalam mitologi Yunani mempunyai padanan dalam mitologi Romawi sehingga planet-planet tersebut dinamai dengan nama yang kita kenal sekarang.
Hingga masa sekarang, tradisi penamaan planet menggunakan nama dewa dalam mitologi Romawi masih berlanjut. Namun demikian ketika planet ke-7 ditemukan, planet ini diberi nama Uranus yang merupakan nama dewa Yunani. Dinamakan Uranus karena Uranus adalah ayah dari |Kronos (Saturnus). Mitologi Romawi sendiri tidak memiliki padanan untuk dewa Uranus. Planet ke-8 diberi nama Neptunus, dewa laut dalam mitologi Romawi.
Nama planet dalam bahasa lain
Karakteristik Planet
Berikut ini beberapa karakteristik khas dari planet-planet
dalam Tata Surya.
1. Planet Merkurius
Merupakan planet terdekat dengan Matahari. Kedekatan ini mengakibatkan suhu di Merkurius sangat panas. Panas siang hari di Merkurius sangat tinggi, konon mampu melelehkan timah yang melapisi kaleng. Jarak antara Matahari dengan Merkurius kurang lebih 57 juta km. Sedangkan jarak dengan Bumi sekitar 92 juta km. Ukurannya hanya 27% dari ukuran Bumi. Merkurius mengelilingi matahari (revolusi) memerlukan waktu 88 hari, sedangkan rotasinya memerlukan waktu 59 hari. Planet tersebut begitu lambat berputar sehingga satu hari hampir sama lamanya dengan satu tahun di Bumi.
2. Planet Venus
Planet terdekat kedua dari Matahari adalah Venus. Salah satu yang khas dari planet ini adalah adanya awan tebal yang menyelimutinya. Awan itu membuat cahaya Matahari terpantulkan. Akibatnya, Venus menjadi planet yang paling terang. Cahayanya akan tampak pada waktu Matahari terbit dan tenggelam. Oleh karenanya, planet ini sering disebut sebagai Bintang Fajar atau Bintang Senja.Venus juga merupakan planet yang paling dekat dengan Bumi. Jarak Venus dengan matahari sekitar 108 juta kilometer. Satu tahun di Venus sama dengan 225 hari di Bumi. Sedangkan satu hari di sana sama dengan 243 hari di Bumi. Dengan demikian, masa revolusinya lebih cepat dibandingkan masa rotasinya.
3. Planet Bumi
Bumi seperti planet yang lain, tidak memiliki cahaya. Bumi pun mempunyai satelit seperti planet lainnya. Bulan sebagai satelit alami Bumi, mempunyai gerakan mengelilingi Bumi dengan waktu putaran 29,5 hari. Bumi mempunyai masa rotasi sekitar 23 jam 56 menit dan memiliki masa revolusi sekitar 365 hari 6 jam.
4. Planet Mars
Planet Mars adalah planet luar yang paling dekat dengan Bumi. Pada malam hari kadang kita melihat sebuah ”bintang” cemerlang yang bercahaya kemerahan. Itulah Mars atau planet merah. Namanya berasal dari nama dewa perang Romawi. Planet ini memiliki diameter kira-kira 6.800 km atau sekitar setengah diameter Bumi. Masa rotasi Mars adalah 24 jam 37 menit dan masa revolusinya 687 hari. Mars memiliki dua buah satelit, yaitu Deimos dan Phobos, temperaturnya lebih rendah dibandingkan dengan temperatur di Bumi.
5. Planet Yupiter
Yupiter adalah planet terbesar yang ada di dalam Tata Surya. Jika kita bayangkan Yupiter sebagai wadah, maka ia mampu menampung sebanyak 1310 planet seukuran Bumi. Tetapi tidak sebanding dengan besarnya, berat Yupiter hanya dua setengah kali Bumi. Planet ini lembek, permukaannya hanya berupa gas helium dan hidrogen cair yang terbungkus awan yang bergerak. Keunikan lain yang dimiliki Yupiter, yaitu rotasi yang paling cepat, hanya membutuhkan 10 jam. Sedangkan masa revolusinya membutuhkan waktu yang sangat lama, yaitu 12 tahun.
6. Planet Saturnus
Planet keenam dalam Tata Surya mempunyai keunikan, dikelilingi dengan cincin yang terbentuk dari potongan jutaan es. Jarak Saturnus dengan Matahari sekitar 1,4 miliar kilo meter. Masa revolusinya sekitar 30 tahun, sedangkan masa rotasinya sekitar 10,5 jam. Planet ini mempunyai sifat seperti Yupiter, keduanya berputar begitu cepat sehingga dianggap sebagai planet yang paling berangin. Kecepatan anginnya lebih dari 10 kecepatan angin Hurricane di Bumi.
7. Planet Uranus
Ditemukan oleh William Herschel pada tahun 1782 dengan bantuan teleskop di kebun belakang rumahnya di Bath, Inggris. Planet ini merupakan salah satu planet yang jauh dari Matahari. Terdiri atas gas utama yang berupa hidrogen, metana, dan helium, serta mengandung es. Keadaan ini membuat Uranus dingin dan beku. Seperti halnya Saturnus, Uranus juga mempunyai cincin. Cincin Uranus tipis dan hingga saat ini telah ditemukan sembilan lapis cincin Uranus.
Keunikan lain juga dimiliki oleh planet ini, rotasinya yang berlawanan dengan arah rotasi Bumi membuat salah satu sisinya seperti sebuah gasing yang rebah. Masa revolusi Saturnus sekitar 84 tahun dan masa rotasinya sekitar 11 jam. Akibatnya satu sisi planet terus-menerus mengalami siang selama 42 tahun, sedangkan sisi yang lain terus-menerus mengalami malam selama 42 tahun.
8. Planet Neptunus
Kondisi di Neptunus tidak berbeda jauh dari Uranus, terdiri atas gas. Ukuran Neptunus juga besar, meskipun tidak sebesar Yupiter. Jika diumpamakan wadah kosong, Neptunus mampu menampung 60 planet seukuran Bumi. Satu tahun di Neptunus sama dengan 165 tahun di Bumi sedangkan satu hari di sana sekitar 16 jam di Bumi. Sejak tahun 1984, para ahli telah menduga bahwa Neptunus mempunyai cincin.
Dugaan ini terbukti setelah pesawat angkasa Voyager 2 berhasil mendekati Neptunus dan memastikan bahwa Neptunus memiliki paling tidak tiga lapis cincin.
Struktur
Perbanding relatif massa planet. Yupiter adalah 71% dari total dan Saturnus 21%. Merkurius dan Mars, yang total bersama hanya kurang dari 0.1% tidak nampak dalam diagram di atas.
Orbit-orbit Tata Surya dengan skala yang sesungguhnya
Illustrasi skala
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya. Yupiter dan Saturnus, dua komponen terbesar yang mengedari Matahari, mencakup kira-kira 90 persen massa selebihnya.
Hampir semua objek-objek besar yang mengorbit Matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.
Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi Matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara Matahari, terkecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling Matahari bergerak mengikuti bentuk elips dengan Matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari Matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan Matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan Matahari dinamai perihelion, sedangkan jarak terjauh dari Matahari dinamai aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan objek sabuk Kuiper kebanyakan orbitnya berbentuk elips.
Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari Matahari, semakin besar jarak antara objek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi (SA) lebih dari Merkurius[d], sedangkan Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.
Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.
TERMINOLOGI
Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa.Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua objek melampaui Neptunus.
Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, dan benda kecil Tata Surya. Planet adalah sebuah badan yang mengedari Matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper.
Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi Matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya. Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris. Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoid". Sisa objek-objek lain berikutnya yang mengitari Matahari adalah benda kecil Tata Surya.
Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida, memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.
Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, 'volatiles' dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.
ZONA PLANET
Zona Tata Surya yang meliputi, planet bagian dalam, sabuk asteroid, planet bagian luar, dan sabuk Kuiper. (Gambar tidak sesuai skala)
Di zona planet dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius (jarak dari Matahari 57,9 × 106 km, atau 0,39 SA), Venus (108,2 × 106 km, 0,72 SA), Bumi (149,6 × 106 km, 1 SA) dan Mars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.
Antara Mars dan Yupiter terdapat daerah yang disebut sabuk asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid ini hanya berdiameter beberapa kilometer (lihat: Daftar asteroid), dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).
Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus (2,875 × 109 km, 19,2 SA) dan Neptunus (4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3 dan 1,66 g/cm3.
Jarak rata-rata antara planet-planet dengan Matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya, planet Neptunus tidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.
TATA SURYA BAGIAN DALAM
Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, objek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.
• Planet-planet bagian dalam
Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars (ukuran menurut skala)
Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai satelit dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara Matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
Merkurius
Merkurius (0,4 SA dari Matahari) adalah planet terdekat dari Matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya. Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin surya. Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal Matahari.
Venus
Venus (0,7 SA dari Matahari) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer. Sejauh ini aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi.
Bumi
Bumi (1 SA dari Matahari) adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diamati memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen.[32] Bumi memiliki satu satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
Mars
Mars (1,5 SA dari Matahari) berukuran lebih kecil dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi. Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.
Sabuk asteroid
Sabuk asteroid utama dan asteroid Troya
Asteroid secara umum adalah objek Tata Surya yang terdiri dari batuan dan mineral logam beku.
Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter.
Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai benda kecil Tata Surya. Beberapa asteroid seperti Vesta dan Hygiea mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai kesetimbangan hidrostatik.
Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan objek yang berdiameter satu kilometer. Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi. Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10−4 m disebut meteorid.
Ceres
Ceres
Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi. Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.
Kelompok Asteroid
Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. satelit asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari satelit-satelit planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi.
Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan "trojan" sering digunakan untuk objek-objek kecil pada Titik Langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari Matahari tiga kali untuk setiak dua edaran Yupiter.
Bagian dalam Tata Surya juga dipenuhi oleh asteroid liar, yang banyak memotong orbit-orbit planet planet bagian dalam.
TATA SURYA BAGIAN LUAR
Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk beberapa Centaur, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung jumlah volatil (contoh: air, amonia, metan, yang sering disebut "es" dalam peristilahan ilmu keplanetan) yang lebih tinggi dibandingkan planet batuan di bagian dalam Tata Surya.
• Planet-planet luar
Raksasa-raksasa gas dalam Tata Surya dan Matahari, berdasarkan skala
Keempat planet luar, yang disebut juga planet raksasa gas (gas giant), atau planet jovian, secara keseluruhan mencakup 99 persen massa yang mengorbit Matahari. Yupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es. Keempat raksasa gas ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.
Yupiter
Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen dan helium. Sumber panas di dalam Yupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Yupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europa menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas. Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.
Saturnus
Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Yupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Yupiter, planet ini hanya seberat kurang dari sepertiga Yupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja. Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
Uranus
Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari Matahari dengan bujkuran poros 90 derajat pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas.[46] Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.
Neptunus
Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Yupiter atau Saturnus. Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair. Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.
Komet
Komet Hale-Bopp
Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari Matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.
Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal. Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit. Komet tua yang bahan volatilesnya telah habis karena panas Matahari sering dikategorikan sebagai asteroid.
Centaur
Centaur adalah benda-benda es mirip komet yang poros semi-majornya lebih besar dari Yupiter (5,5 SA) dan lebih kecil dari Neptunus (30 SA). Centaur terbesar yang diketahui adalah, 10199 Chariklo, berdiameter 250 km. Centaur temuan pertama, 2060 Chiron, juga diklasifikasikan sebagai komet (95P) karena memiliki koma sama seperti komet kalau mendekati Matahari. Beberapa astronom mengklasifikasikan Centaurs sebagai objek sabuk Kuiper sebaran-ke-dalam (inward-scattered Kuiper belt objects), seiring dengan sebaran keluar yang bertempat di piringan tersebar (outward-scattered residents of the scattered disc).
Daerah trans-Neptunus
Plot seluruh objek sabuk Kuiper
Diagram yang menunjukkan pembagian sabuk Kuiper
Daerah yang terletak jauh melampaui Neptunus, atau daerah trans-Neptunus, sebagian besar belum dieksplorasi. Menurut dugaan daerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya, meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.
Sabuk Kuiper
Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid, tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA, dan terdiri dari benda kecil Tata Surya. Meski demikian, beberapa objek Kuiper yang terbesar, seperti Quaoar, Varuna, dan Orcus, mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 objek Sabuk Kuiper yang berdiameter lebih dari 50 km, tetapi diperkirakan massa total Sabuk Kuiper hanya sepersepuluh massa bumi. Banyak objek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.
Sabuk Kuiper secara kasar bisa dibagi menjadi "sabuk klasik" dan resonansi. Resonansi adalah orbit yang terkait pada Neptunus (contoh: dua orbit untuk setiap tiga orbit Neptunus atau satu untuk setiap dua). Resonansi yang pertama bermula pada Neptunus sendiri. Sabuk klasik terdiri dari objek yang tidak memiliki resonansi dengan Neptunus, dan terletak sekitar 39,4 SA sampai 47,7 SA. Anggota dari sabuk klasik diklasifikasikan sebagai cubewanos, setelah anggota jenis pertamanya ditemukan (15760) 1992QB1
Pluto dan Charon
Pluto dan ketiga satelitnya
Pluto (rata-rata 39 SA), sebuah planet kerdil, adalah objek terbesar sejauh ini di Sabuk Kuiper. Ketika ditemukan pada tahun 1930, benda ini dianggap sebagai planet yang kesembilan, definisi ini diganti pada tahun 2006 dengan diangkatnya definisi formal planet. Pluto memiliki kemiringan orbit cukup eksentrik (17 derajat dari bidang ekliptika) dan berjarak 29,7 SA dari Matahari pada titik prihelion (sejarak orbit Neptunus) sampai 49,5 SA pada titik aphelion.
Tidak jelas apakah Charon, satelit Pluto yang terbesar, akan terus diklasifikasikan sebagai satelit atau menjadi sebuah planet kerdil juga. Pluto dan Charon, keduanya mengedari titik barycenter gravitasi di atas permukaannya, yang membuat Pluto-Charon sebuah sistem ganda. Dua satelit yang jauh lebih kecil Nix dan Hydra juga mengedari Pluto dan Charon. Pluto terletak pada sabuk resonan dan memiliki 3:2 resonansi dengan Neptunus, yang berarti Pluto mengedari Matahari dua kali untuk setiap tiga edaran Neptunus. Objek sabuk Kuiper yang orbitnya memiliki resonansi yang sama disebut plutino.
Haumea dan Makemake
Haumea (rata-rata 43,34 SA) dan Makemake (rata-rata 45,79 SA) adalah dua objek terbesar sejauh ini di dalam sabuk Kuiper klasik. Haumea adalah sebuah objek berbentuk telur dan memiliki dua satelit. Makemake adalah objek paling cemerlang di sabuk Kuiper setelah Pluto. Pada awalnya dinamai 2003 EL61 dan 2005 FY9, pada tahun 2008 diberi nama dan status sebagai planet kerdil. Orbit keduanya berinklinasi jauh lebih membujur dari Pluto (28° dan 29°) [59] dan lain seperti Pluto, keduanya tidak dipengaruhi oleh Neptunus, sebagai bagian dari kelompok Objek Sabuk Kuiper klasik.
Piringan tersebar
Eris dan satelitnya Dysnomia
Piringan tersebar (scattered disc) berpotongan dengan sabuk Kuiper dan menyebar keluar jauh lebih luas. Daerah ini diduga merupakan sumber komet berperioda pendek. Objek piringan tersebar diduga terlempar ke orbit yang tidak menentu karena pengaruh gravitasi dari gerakan migrasi awal Neptunus. Kebanyakan objek piringan tersebar (scattered disc objects, atau SDO) memiliki perihelion di dalam sabuk Kuiper dan apehelion hampir sejauh 150 SA dari Matahari. Orbit OPT juga memiliki inklinasi tinggi pada bidang ekliptika dan sering hampir bersudut siku-siku. Beberapa astronom menggolongkan piringan tersebar hanya sebagai bagian dari sabuk Kuiper dan menjuluki piringan tersebar sebagai "objek sabuk Kuiper tersebar" (scattered Kuiper belt objects).
Eris
Eris (rata-rata 68 SA) adalah objek piringan tersebar terbesar sejauh ini dan menyebabkan mulainya debat tentang definisi planet, karena Eris hanya 5%lebih besar dari Pluto dan memiliki perkiraan diameter sekitar 2.400 km. Eris adalah planet kerdil terbesar yang diketahui dan memiliki satu satelit, Dysnomia. Seperti Pluto, orbitnya memiliki eksentrisitas tinggi, dengan titik perihelion 38,2 SA (mirip jarak Pluto ke Matahari) dan titik aphelion 97,6 SA dengan bidang ekliptika sangat membujur.
Daerah terjauh
Titik tempat Tata Surya berakhir dan ruang antar bintang mulai tidaklah persis terdefinisi. Batasan-batasan luar ini terbentuk dari dua gaya tekan yang terpisah: angin surya dan gravitasi Matahari. Batasan terjauh pengaruh angin surya kira kira berjarak empat kali jarak Pluto dan Matahari. Heliopause ini disebut sebagai titik permulaan medium antar bintang. Akan tetapi Bola Roche Matahari, jarak efektif pengaruh gravitasi Matahari, diperkirakan mencakup sekitar seribu kali lebih jauh.
Heliopause
Voyager memasuki heliosheath
Heliopause dibagi menjadi dua bagian terpisah. Awan angin yang bergerak pada kecepatan 400 km/detik sampai menabrak plasma dari medium ruang antarbintang. Tabrakan ini terjadi pada benturan terminasi yang kira kira terletak di 80-100 SA dari Matahari pada daerah lawan angin dan sekitar 200 SA dari Matahari pada daerah searah jurusan angin. Kemudian angin melambat dramatis, memampat dan berubah menjadi kencang, membentuk struktur oval yang dikenal sebagai heliosheath, dengan kelakuan mirip seperti ekor komet, mengulur keluar sejauh 40 SA di bagian arah lawan angin dan berkali-kali lipat lebih jauh pada sebelah lainnya. Voyager 1 dan Voyager 2 dilaporkan telah menembus benturan terminasi ini dan memasuki heliosheath, pada jarak 94 dan 84 SA dari Matahari. Batasan luar dari heliosfer, heliopause, adalah titik tempat angin surya berhenti dan ruang antar bintang bermula.
Bentuk dari ujung luar heliosfer kemungkinan dipengaruhi dari dinamika fluida dari interaksi medium antar bintang dan juga medan magnet Matahari yang mengarah di sebelah selatan (sehingga memberi bentuk tumpul pada hemisfer utara dengan jarak 9 SA, dan lebih jauh daripada hemisfer selatan. Selebih dari heliopause, pada jarak sekitar 230 SA, terdapat benturan busur, jaluran ombak plasma yang ditinggalkan Matahari seiring edarannya berkeliling di Bima Sakti.
Sejauh ini belum ada kapal luar angkasa yang melewati heliopause, sehingga tidaklah mungkin mengetahui kondisi ruang antar bintang lokal dengan pasti. Diharapkan satelit NASA voyager akan menembus heliopause pada sekitar dekade yang akan datang dan mengirim kembali data tingkat radiasi dan angin surya. Dalam pada itu, sebuah tim yang dibiayai NASA telah mengembangkan konsep "Vision Mission" yang akan khusus mengirimkan satelit penjajak ke heliosfer.
Awan Oort
Gambaran seorang artis tentang Awan Oort
Secara hipotesa, Awan Oort adalah sebuah massa berukuran raksasa yang terdiri dari bertrilyun-trilyun objek es, dipercaya merupakan sumber komet berperioda panjang. Awan ini menyelubungi matahari pada jarak sekitar 50.000 SA (sekitar 1 tahun cahaya) sampai sejauh 100.000 SA (1,87 tahun cahaya). Daerah ini dipercaya mengandung komet yang terlempar dari bagian dalam Tata Surya karena interaksi dengan planet-planet bagian luar. Objek Awan Oort bergerak sangat lambat dan bisa digoncangkan oleh situasi-situasi langka seperti tabrakan, effek gravitasi dari laluan bintang, atau gaya pasang galaksi, gaya pasang yang didorong Bima Sakti.
Sedna
Foto teleskop Sedna
Sedna (rata-rata 525,86 SA) adalah sebuah benda kemerahan mirip Pluto dengan orbit raksasa yang sangat eliptis, sekitar 76 SA pada perihelion dan 928 SA pada aphelion dan berjangka orbit 12.050 tahun. Mike Brown, penemu objek ini pada tahun 2003, menegaskan bahwa Sedna tidak merupakan bagian dari piringan tersebar ataupun sabuk Kuiper karena perihelionnya terlalu jauh dari pengaruh migrasi Neptunus. Dia dan beberapa astronom lainnya berpendapat bahwa Sedna adalah objek pertama dari sebuah kelompok baru, yang mungkin juga mencakup 2000 CR105. Sebuah benda bertitik perihelion pada 45 SA, aphelion pada 415 SA, dan berjangka orbit 3.420 tahun. Brown menjuluki kelompok ini "Awan Oort bagian dalam", karena mungkin terbentuk melalui proses yang mirip, meski jauh lebih dekat ke Matahari. Kemungkinan besar Sedna adalah sebuah planet kerdil, meski bentuk kebulatannya masih harus ditentukan dengan pasti.
BATASAN-BATASAN
Banyak hal dari Tata Surya kita yang masih belum diketahui. Medan gravitasi Matahari diperkirakan mendominasi gaya gravitasi bintang-bintang sekeliling sejauh dua tahun cahaya (125.000 SA). Perkiraan bawah radius Awan Oort, di sisi lain, tidak lebih besar dari 50.000 SA.[64] Sekalipun Sedna telah ditemukan, daerah antara Sabuk Kuiper dan Awan Oort, sebuah daerah yang memiliki radius puluhan ribu SA, bisa dikatakan belum dipetakan. Selain itu, juga ada studi yang sedang berjalan, yang mempelajari daerah antara Merkurius dan matahari.[65] Objek-objek baru mungkin masih akan ditemukan di daerah yang belum dipetakan.
Konteks galaksi
Lokasi Tata Surya di dalam galaksi Bima Sakti
Lukisan artis dari Gelembung Lokal
Tata Surya terletak di galaksi Bima Sakti, sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang. Matahari berlokasi di salah satu lengan spiral galaksi yang disebut Lengan Orion. Letak Matahari berjarak antara 25.000 dan 28.000 tahun cahaya dari pusat galaksi, dengan kecepatan orbit mengelilingi pusat galaksi sekitar 2.200 kilometer per detik.
Setiap revolusinya berjangka 225-250 juta tahun. Waktu revolusi ini dikenal sebagai tahun galaksi Tata Surya. Apex Matahari, arah jalur Matahari di ruang semesta, dekat letaknya dengan rasi bintang Herkules terarah pada posisi akhir bintang Vega.
Lokasi Tata Surya di dalam galaksi berperan penting dalam evolusi kehidupan di Bumi. Bentuk orbit bumi adalah mirip lingkaran dengan kecepatan hampir sama dengan lengan spiral galaksi, karenanya bumi sangat jarang menerobos jalur lengan. Lengan spiral galaksi memiliki konsentrasi supernova tinggi yang berpotensi bahaya sangat besar terhadap kehidupan di Bumi. Situasi ini memberi Bumi jangka stabilitas yang panjang yang memungkinkan evolusi kehidupan.
Tata Surya terletak jauh dari daerah padat bintang di pusat galaksi. Di daerah pusat, tarikan gravitasi bintang-bintang yang berdekatan bisa menggoyang benda-benda di Awan Oort dan menembakan komet-komet ke bagian dalam Tata Surya. Ini bisa menghasilkan potensi tabrakan yang merusak kehidupan di Bumi.
Intensitas radiasi dari pusat galaksi juga memengaruhi perkembangan bentuk hidup tingkat tinggi. Walaupun demikian, para ilmuwan berhipotesa bahwa pada lokasi Tata Surya sekarang ini supernova telah memengaruhi kehidupan di Bumi pada 35.000 tahun terakhir dengan melemparkan pecahan-pecahan inti bintang ke arah Matahari dalam bentuk debu radiasi atau bahan yang lebih besar lainnya, seperti berbagai benda mirip komet.
Daerah lingkungan sekitar
Lingkungan galaksi terdekat dari Tata Surya adalah sesuatu yang dinamai Awan Antarbintang Lokal (Local Interstellar Cloud, atau Local Fluff), yaitu wilayah berawan tebal yang dikenal dengan nama Gelembung Lokal (Local Bubble), yang terletak di tengah-tengah wilayah yang jarang. Gelembung Lokal ini berbentuk rongga mirip jam pasir yang terdapat pada medium antarbintang, dan berukuran sekitar 300 tahun cahaya. Gelembung ini penuh ditebari plasma bersuhu tinggi yang mungkin berasal dari beberapa supernova yang belum lama terjadi.
Di dalam jarak sepuluh tahun cahaya (95 triliun km) dari Matahari, jumlah bintang relatif sedikit. Bintang yang terdekat adalah sistem kembar tiga Alpha Centauri, yang berjarak 4,4 tahun cahaya. Alpha Centauri A dan B merupakan bintang ganda mirip dengan Matahari, sedangkan Centauri C adalah kerdil merah (disebut juga Proxima Centauri) yang mengedari kembaran ganda pertama pada jarak 0,2 tahun cahaya.
Bintang-bintang terdekat berikutnya adalah sebuah kerdil merah yang dinamai Bintang Barnard (5,9 tahun cahaya), Wolf 359 (7,8 tahun cahaya) dan Lalande 21185 (8,3 tahun cahaya). Bintang terbesar dalam jarak sepuluh tahun cahaya adalah Sirius, sebuah bintang cemerlang dikategori 'urutan utama' kira-kira bermassa dua kali massa Matahari, dan dikelilingi oleh sebuah kerdil putih bernama Sirius B. Keduanya berjarak 8,6 tahun cahaya. Sisa sistem selebihnya yang terletak di dalam jarak 10 tahun cahaya adalah sistem bintang ganda kerdil merah Luyten 726-8 (8,7 tahun cahaya) dan sebuah kerdial merah bernama Ross 154 (9,7 tahun cahaya).
Bintang tunggal terdekat yang mirip Matahari adalah Tau Ceti, yang terletak 11,9 tahun cahaya. Bintang ini kira-kira berukuran 80% berat Matahari, tetapi kecemerlangannya (luminositas) hanya 60%. Planet luar Tata Surya terdekat dari Matahari, yang diketahui sejauh ini adalah di bintang Epsilon Eridani, sebuah bintang yang sedikit lebih pudar dan lebih merah dibandingkan mathari. Letaknya sekitar 10,5 tahun cahaya. Planet bintang ini yang sudah dipastikan, bernama Epsilon Eridani b, kurang lebih berukuran 1,5 kali massa Yupiter dan mengelilingi induk bintangnya dengan jarak 6,9 tahun cahaya.
EKSOPLANET
Extrasolar planet, atau exoplanet, adalah planet di luar Tata Surya, yang mengorbit bintang lainnya. Sampai Januari 2009, sekitar 335 exoplanet telah didata dalam katalog Ensiklopedia Extrasolar Planet.
TEMUAN AWAL
Klaim mengenai deteksi exoplanet telah ada sejak abad ke-19. Termasuk yang pertama-tama melibatkan bintang binary 70 Ophiuchi. Pada tahun 1855, Capt. W. S. Jacob dari Observatorium Madras, East India Company melaporkan bahwa ada anomali dari orbit bintang biner tersebut sehingga kemungkinan besar ada planet dalam sistem bintang biner (70 Ophiuchi). Pada tahun 1890-an Thomas J.J. See dari Universitas Chigago dan Observatorium Angkatan Laut Amerika menyatakan bahwa anomali orbit pada bintang ganda 70 Ophiuchi membuktikan keberadaan suatu planet yang mengorbit sistem bintang tersebut dalam siklus 36 tahun. Tetapi, Forest Ray Moulton segera mengeluarkan paper yang membuktikan bahwa sistem orbit tersebut sangat tidak stabil. Antara tahun 1950an – 1960an, Peter van de Kamp dari Kampus Swarthmore memberikan klaim lainnya mengenai deteksi planet-planet, kali ini memiliki orbit di Bintang Barnard.
Pada tahun 1991, Andrew Lyne, M. Bailes dan S.L. Shemar mengklaim telah menemukan planet pulsar (planet yang mengorbit pulsar) yang mengorbit PSR 1829-10, menggunakan metode pulsar timing variation. Klaim tersebut menyedot banyak perhatian, tapi kemudian Lyne dan timnya segera menarik klaim mereka.
TEMUAN SELANJUTNYA
Penemuan pertama yang memperoleh konfirmasi berturut-turut dibuat pada tahun 1988 oleh Astronom Bruce Campbell, G.A.H. Walker, dan S. Yang. Dengan metode observasi radial-velocity, diperkirakan ada planet yang mengorbit bintang Gamma Cephei. Mereka sangat berhati-hati dalam mengklaim deteksi planet yang sebenarnya, dan sikap skeptis yang berkembang luas bertahan dalam komunitas astronomi selama beberapa tahun mengenai observasi mereka juga observasi lainnya yang serupa. Hal ini dikarekakan keterbatasan peralatan dalam melakukan deteksi tersebut pada waktu itu. Sumber keraguan lainnya adalah apa yang diduga planet kemungkinan besar adalah Brown Dwarf, yaitu objek yang bukan planet, juga bukan bintang (seperti planet Jupiter, tetapi lebih besar dan memancarkan sinar redup, pent.).
Tahun berikutnya, hasil observasi-observasi tambahan diterbitkan yang mendukung kebenaran planet yang mengorbit bintang Gamma Cephei. Akhirnya, pada tahun 2003, tehnik-tehnik yang telah diperbaiki membuat keberadan planet tersebut akhirnya dikonfirmasi keberadaannya.
Pada tanggal 6 Oktober, 1995, Michel Mayor dan Didier Queloz dari Universitas Geneva mengumumkan deteksi pertama yang definitif mengenai eksoplanet yang mengorbit bintang main-sequence (bintang spti matahari kita, pent.), 51 Pegasi. Penemuan yang dilakukan di Observatoire de Haute-Provence telah membawa penemuan eksoplanet ke era yang lebih modern. Kemajuan teknologi, terutama dalam spektroskopi resolusi tinggi, telah mengarah pada pendeteksian eksoplanet-eksoplanet baru dalam waktu yang cepat. Kemajuan-kemajuan ini memungkinkan para astronom mendeteksi eksoplanet secara tidak langsung dengan cara mengukur pengaruh gravitasi planet tsb. terhadap bintang yang dikelilinginya. Beberapa planet-planet ekstrasolar akhirnya ditemukan dengan cara mengamati perubahan pancaran cahaya bintang ketika suatu planet lewat didepannya.
Sampai saat ini, sekitar 335 eksoplanet telah ditemukan, termasuk beberapa konfirmasi dari klaim-klaim yang kontroversial di akhir tahun 1980an. Saat ini ada sekitar 20 sistem multi-planet yang telah ditemukan.
Asteroid
253 Mathilde, asteroid jenis-C berukuran 50 km . Gambar diambil pada 1997 oleh prob NEAR Shoemaker.
Asteroid ialah objek kecil dalam sistem suria yang mengelilingi matahari yang mempunyai saiz yang lebih kecil daripada planet. Oleh sebab itu, asteroid tergolong dalam kumpulan planet kecil (minor planet) atau dikenali sebagai planetoid.
Asteroid dipercayai merupakan lebihan cakera proto planet yang tidak membentuk planet ketika pembentukan sistem suria dahulu. Sesetengah asteroid mempunyai bulan.
Kebanyakan asteroid berada di gelang asteroid dalam orbit bujur antara marikh dan musytari.
Definisi sebenar asteroid masih dalam perbincangan. Istilah planet minor tidak membawa cadangan mengenai komposisi objek atau kedudukan umumnya dalam sistem suria. Sesetengah berpendapat tidak semua planet minor boleh digelar asteroid.
Salah satu cara untuk mengelaskannya ialah melalui saiz objek. Pada masa ini, asteroid didefinisikan sebagai objek yang mempunyai saiz melebihi 50m diameter yang membezakan mereka dengan meteoroid yang selalunya bersaiz lebih kecil.
Perbezaan ini dibuat kerana saiz besar asteroid membolehkannya selamat melalui atmosfera Bumi dan menghentam Bumi. Meteoroid pula selalunya berkecai di atmosfera Bumi.
Kesimpulannya, asteroid ialah objek berbatu (bukan ais) yang bersaiz lebih besar daripada meteoroid, tetapi kecil daripada planet.
Klasifikasi asteroid
Asteroid selalunya dibahagi kepada kumpulan berdasarkan sifat sifat orbit dan spektrum cahaya yang dipantulkan.
• Meteor
Meteor adalah benda ruang angkasa yang masuk kedalam atmosfer bumi karena tertarik oleh gravitasi bumi dengan kecepatan tinggi dan berpijar karena gesekan dengan atmosfer yang menyebabkan benda tersebut terbakar. Meteor biasanya dapat kita lihat pada malam hari meskipun sebenarnya tidak hanya pada malam hari saja ia masuk kedalam atmosfer bumi. Sebagian orang menyebut fenomena ini adalah bintang jatuh.
• Meteorit
Meteorit adalah benda-benda ruang angkasa yang bergerak dengan kecepatan tinggi yang jumlahnya tak terhitung. Meteorit memiliki berbagai bentuk, kandungan pembentuknya, massa, warna, sifat dan kepadatannya.
• Komet
Komet adalah benda ruang angkasa yang memiliki orbit mengelilingi matahari seperti halnya planet, akan tetapi ia memiliki orbit tersendiri yaitu membentuk orbit lonjong. Ketika komet berada pada lintasan orbit yang posisinya mendekati matahari, ia akan memiliki ekor gas debu yang sangat panjang dan bercahaya dan ekornya selalu mengarah menjauhi matahari. Komet yang paling terkenal yang pada suatu waktu dapat terlihat dari bumi dengan mata telanjang adalah komet Hally.
• Satelit
Satelit adalah benda ruang angkasa yang mengelilingi planet. Bersama dengan planet yang ia kelilingi ia juga ikut berevolusi mengelilingi matahari. Bumi kita memiliki satu satelit alam yang kita namakan bulan, disamping satelit-satelit lain buatan manusia yang berfungsi untuk alat komunikasi, riset dan lain-lain.
• Bintang
Bintang adalah benda ruang angkasa yang jumlahnya tak terhitung dan memancarkan cahaya sendiri atau ia merupakan sumber cahaya, seperti halnya matahari. Bintang sendiri merupakan pusat dari tata surya yang dikelilingi oleh planet-planetnya. Bintang dalam jagat raya ini yang terdekat dengan kita adalah matahari yang berjarak sekitar 150 juta kilometer dari bumi. Sedangkan bintang bintang yang lain jaraknya sangat jauh hingga biasanya dihitung dalam satuan *tahun cahaya* sehingga apabila kita lihat dari bumi terlihat sangat kecil.
• Planet
Planet adalah benda ruang angkasa yang mengelilingi bintang, seperti halnya bumi yang mengelilingi matahari. Planet tidak bercahaya, akan tetapi ia dapat memantulkan cahaya yang ia terima dari bintang yang menjadi pusat tata suryanya. Dalam tata surya kita, ada 9 planet yang masing-masing bernama Merkurius, Venus, Bumi, Mars, Jupiter, Saturnus, Uranus, Neptunus, dan satu planet lagi yang saat ini sudah tidak diakui karena suatu hal oleh dunia yaitu planet Pluto.
Definisi Satelit
Satelit adalah sesuatu yang mengorbit sebuah planet atau bintang. Misalnya, Bumi adalah satelit karena mengorbit matahari. Demikian juga, bulan adalah satelit karena mengorbit ke Bumi. Biasanya, kata "satelit" mengacu pada mesin yang diluncurkan ke ruang angkasa dan bergerak di sekitar Bumi.
Satelit merupakan alat elektronik yang mengorbit di bumi dan mampu bertahan sendiri.Dapat diartikan sebagai repeater yang berfungsi untuk menerima signal gelombang microwave dari stasiun bumi, ditranslasikan frekuensinya, kemuadian diperkuat untuk dipancarkan kembali ke arah bumi sesuai dengan coverage-nya yang merupakan lokasi stasiun bumi tujuan atau penerima. Dalam komunikasi GEO (merupakan sistem komunikasi satelit yang paling banyak), posisi satelit adalah sekitar 36.000 km diatas bumi.
Ada dua jenis satelit yaitu satelit alami dan satelit buatan
• Satelit alami adalah benda-benda luar angkasa bukan buatan manusia yang mengorbit sebuah planet atau benda lain yang lebih besar daripada dirinya, seperti bulan yang merupakan satelit alami bumi. Sebenarnya, terminologi ini berlaku juga bagi planet yang mengelilingi sebuah bintang, atau bahkan sebuah bintang yang mengelilingi galaksi, tetapi jarang digunakan. Bumi sendiri sebenarnya merupakan satelit alami matahari.
• Satelit buatan adalah benda buatan manusia yang beredar mengelilingi benda lain, misalnya satelit Palapa yang mengelilingi bumi.Sputnik 1 merupakan satelit pertama di ruang angkasa diluncurkan Uni Soviet pada tahun 1957.
Rute dimana satelit berjalan disebut orbit. Dalam orbit terdapat dua istilah, yaitu apogee (titik terjauh dengan bumi) dan perigee (titik terdekat dengan bumi).Satelit datang dalam berbagai bentuk dan ukuran. Namun sebagian besar memiliki setidaknya dua bagian yang sama - antena dan sumber daya. Antena mengirim dan menerima informasi ke dan dari Bumi. Sumber daya didapat dari panel surya atau baterai. Panel surya membuat tenaga dengan mengubah sinar matahari menjadi listrik.
Banyak satelit dipasangi kamera dan sensor ilmiah,kadang-kadang titik instrumen menuju Bumi untuk mengumpulkan informasi tentang, udara tanah dan air. Lain kali mereka dihadapkan ke arah ruang untuk mengumpulkan data dari sistem tata surya dan alam semesta.
Astronomer telah menemukan 146 satelit di tata surya kita. Jumlah ini tidak termasuk 6 satelit pada planet-planet kerdil, juga satelit kecil yang mengorbit beberapa asteroid dan benda langit lainnya. Ada 21 satelit yang menunggu konfirmasi resmi tentang penemuan mereka. Adapun Merkurius dan Venus tidak mempunyai satelit.
Simak tabel beberapa nama satelit berikut:
Planet Jumlah Satelit* Nama Satelit Diameter (km)
Bumi
1
Bulan
3.476
Mars
2
Phobos
Deimos 22
14
Jupiter
50 diketahui (+12 menunggu konfirmasi) Io
Europa
Ganymede 3.630
3.138
5.262
Saturnus
53 diketahui (+9 menunggu konfirmasi) Pandora
Epimetheus
Janus 90
120
190
Uranus
27
Cressida
Desdemona
Juliet 66
58
84
Neptunus
13
Proteus
Triton
Nereid 416
2.700
340
BAB III
PENUTUP
Sampai sekarang belum ada teori yang benar-benar tepat untuk mengambarkan masa depan alam semesta. Pertanyaan kita sekarang tentang suatu hal pada akhirnya akan terjawab , namun setelah itu akan muncul beberapa pertanyaan baru. Demikianlah yang akan terjadi jika kita bertanya tentang alam semesta, kita tidak akan pernah puas karena sifat curiosity kita. Seringkali kita mendapati suatu pertanyaan yang sangat mendasar, yang mendapat jawaban membuat hati kita kagum, heran, takzim dan sampai pada tingkat suatu perenungan bahwa betapa luar biasa kuasa tuhan alam semesta ini.
Demikian makalah ini kami buat. Di dalamnya terdapat kesalahan dan itu adalah hal yang niscaya. Karena kita tempat kesalahan dan lupa. Kami mengharap kritik saran membangun anda, agar dapat memperbaiki diri selaku mahluk sosial. Semoga makalah ini bermanfaat bagi penulis sendiri serta pembacanya. Amin.
Disusun Oleh:
Plaviana Chintya (F15112018)
Pudensiana Apriyanti Sianioar (F15112004)
Fenny Fenesia (F15112027)
Dian Debita Saragih (F15112034)
DAFTAR PUSTAKA
Purnama, Heri, Ilmu Alamiah Dasar, Jakarta: Rineka Cipta, 2008.
Ismail al-Jawisy, Muhammad, Maha Besar Allah Atas Semua Ciptaan-Nya, Jogjakarta: Garailmu, 2009.
Jasin, Maskoeri, Ilmu Alamiah Dasar, Jakarta: Rajawali Pers, 2008.
Tjasyono HK, Bayong, Ilmu Kebumian dan Antariksa, Bandung: Rosda, 2009.
Endarto, Danang, Pengantar Kosmografi, cet. I, Surakarta: LPP UNS dan UNS Press, 2005.
Maskufa, Ilmu Falaq, cet. I, Jakarta: Gaung Persada Press, 2009.
Fredette Claude Lefleur, Nathalie, penerjemah; Hendro Setyanto, Understanding The Universe, Jackues Fortin, 2006.
http://hbis.wordpress.com/2009/10/07/teori-tata-surya-dan-teori-big-bang/tata surya-2/
Heri Purnama, Ilmu Alamiah Dasar, Jakarta: Rineka Cipta, 2008, hal. 129
Muhammad Ismail al-Jawisy, Maha Besar Allah Atas Semua Ciptaan-Nya, Jogjakarta: Garailmu, 2009, hal. 243
Maskoeri Jasin, Ilmu Alamiah Dasar, Jakarta: Rajawali Pers, 2008, hal. 91
Bayong Tjasyono HK, Ilmu Kebumian dan Antariksa, Bandung: Rosda, 2009, hal. 3
Danang Endarto, Pengantar Kosmografi, cet. I, Surakarta: LPP UNS dan UNS Press, 2005, hal. 77-78
Ibid hal. 79
Maskufa, Ilmu Falaq, cet. I, Jakarta: Gaung Persada Press, 2009, hal. 30
Danang Endarto, op cit, hal. 83
Maskufa, op cit, hal. 30-31
http://hbis.wordpress.com/2009/10/07/teori-tata-surya-dan-teori-big-bang/tata surya-2/
Maskufa, op cit, hal. 31-32
http://hbis.wordpress.com/2009/10/07/teori-tata-surya-dan-teori-big-bang/tata surya-2/
Nathalie Fredette Claude Lefleur, penerjemah; Hendro Setyanto, Understanding The Universe, Jackues Fortin, 2006, h
al. 22
#sebenernya ada banyak gambar pada postingan ini, dikarenakan terlalu banyak, maka gambarnya dihilangkan, moga bermanfaat ajah n.n
Rabu, 13 Maret 2013
KEBENARAN ILMU ALAMIAH
1. Sistematika Metode Ilmiah
Kebenaran ilmu alamiah akan terlihat dari metode yang digunakan, jika sesuatu pengetahuan didapat melalui metode ilmiah maka pengetahuan itu dinyatakan ilmiah dan sebaliknya jika tidak melalui metode ilmiah maka pengetahuan itu dinyatakan tidak ilmiah, Sebagai langkah pemecahan atau prosedur ilmiah yaitu sebagai berikut :
a. Pengindraan
Pengindraan merupakan langkah awal yang penting dalam mengenali objek masalah, tetapi akurasi pengindraan tidak dapat dijadikan ajeg kebenaran karena pengaruh kondisi dan sifat pengindraan yang terbatas dalam mengenali objek, oleh karena itu perlu adanya pengulangan secara berkali-kali dan memerlukan waktu yang relatif lama, biasanya orang yang terlatih memiliki pengindraan yang tajam, seorang ahli musik memiliki pengindraan pendengaran yang sensitive sehingga peka terhadap kebenaran musik. Begitu pula ahli peneliti perlu terlatih dalam mengindra objek supaya tidak keliru, maka untuk itu agar pengindraan dapat ajeg, objektif perlu dibantu dengan alat indra buatan yang ditera akurasinya seperti termometer sebagai alat untuk mengukur suhu.
b. Masalah
Langkah selanjutnya setelah proses pengindraan terhadap suatu objek yang telah direnungkan terlebih dahulu adalah menentukan masalah hasil pengindraan, untuk mengetahui sesuatu itu menjadi masalah apabila objek itu mengandung pertanyaan, seperti pertanyaan apa ? bagaimana ? dan mengapa ? suatu objek itu begini atau begitu, tentu saja pertanyaan para ilmuwan akan berbeda dengan orang umum artinya pertanyaan itu harus terukur dan teruji sehingga akurasi jawabannya dapat dipertanggungjawabkan. Perlu ditegaskan bahwa pertanyaan yang dimaksud adalah mengandung objek yang jelas atau dapat diindra, bukan pertanyaan mengapa alam ini ada ? karena pertanyaan seperti ini bukan kajian ilmu alamiah.
c. Hipotesa / Hipotesis
Hipotesa atau dugaan sementara merupakan jawaban sementara dari pertanyaan masalah, untuk mengetahui apakah hipotesa itu benar perlu diuji dan eksperimen yang akurat dan didukung oleh data fakta yang kuat, bila ternyata fakta berbicara lain maka perlu disusun hipotesis baru. Biasanya ilmu membuat hipotesa terdiri dari dua klausal positif dan negatif yakni dua jawaban yang satu dengan lainnya saling bertolak belakang., diantara kedua hipotesa itu diharapkan salah satunya dapat didukung oleh data dan fakta hasil eksperimen maupun survei.
d. Eksperimen
Eksperimen merupakan pengujian terhadap hipotesa yang dilakukan untuk mendapatkan pengumpulan data atau fakta melalui kegiatan observasi langsung atau percobaan/eksperimental. Selanjutnya fakta-fakta itu dikumpulkan dan dianalisa apakah mendukung hipotesa yang diajukan atau tidak.
e. Penarikan Kesimpulan
Penarikan kesimpulan dilakukan berdasarkan atas penilaian melalui analisis terhadap fakta-fakta, untuk melihat apakah hipotesa itu yang diajukan itu diterima atau sebaliknya ditolak. Hipotesa yang diterima merupakan pengetahuan yang telah diuji kebenarannya dan sebagai bagian dari ilmu pengetahuan.
Dengan demikian ilmu pengetahuan itu disusun secara sistematis dengan menggunakan metoda tertentu dan diuji kebenarannya secara empiris dan berlaku secara universal.
2. Sikap-Sikap Ilmiah
Salah satu aspek tujuan mempelajari Ilmu alamiah dasatr ini adalah bagaimana menanamkan sikap ilmiah bagi mahasiswa, berikut ini di jelaskan beberapa sikap ilmiah yang harus dimilki oleh seorang ilmuan ;
a.Jujur
Sebagai ilmuan wajib melaporkan hasil pengamatannya secara objektif. Dalam kehidupan sehari-hari mungkin saja ia tidak jujur dari manusia lain, tetapi dalam hal penelitian ia harus sejujur-jujurnya dalam melaporkan penelitiannya hingga pelaporan harus disampaikan sejujur-jujurnya agar terbuka bagi peneliti lain bila dilakukan pengulangan.
b. Terbuka
Seorang ilmuan mempunyai pandangan luas , terbuka bebas dari praduga, ia tidak memperoleh buah pikirannya dari dugaan, ia akan terus mendapatkan kebenaran dengan prosedur ilmiah dan membuka diri bagi pihak lain untuk menguji dan mengkritik kebenarannya atau selalu menghargai kebenaran orang lain.
c. Toleran
Seorang ilmuwan tidak merasa bahwa dirinya paling benar, bahkan ia bersedia mengakui bahwa oprang lain mungkin lebih benar. Dalam menambah ilmu pengetahuan ia bersedia belajar dari orang lain, membandingkan pendapatnya dengan pendapat orang lain, ia memiliki tenggang rasa atau sikap toleran yang tinggi, jauih dari sikap angkuh.
d. Skeptis
Skeptis adalah sikap kehati-hatian dan kritis dalam memperoleh informasi, tidak sinis tetapi meragukan kebenaran informasi sebelum teruji yang didukung oleh data fakta yang kuat sehingga dalam membuat pernyataan, keputusan atau kesimpulan tidak keliru.
e. Optimis
Optimis adalah berpengharapan baik dalam menghadapai segala sesuatu, tidak putus- asa, dan ia selalu berkata “ Beri saya kesempatan untuk berpikir dan mencoba mengerjakannya” . Seorang yang memiliki kecerdasan optimis akan memiliki rasa humor yang tinggi. John Von Neuman memberi nama hasil karyanya dengan sebutan MANIAC ( sehingga membuat peserta seminar tertawa) padahal maniac itu istilah dari singkatan Mathematical Analyzer, Numerical Integrator and Computer.
f. Pemberani
Ilmuwan sebagai pencari kebenaran harus berani melawan semua kesalahan, penipuan, kepura-puraan, kemunafikan dan kebatilan yang akan
menghambat kemajuan. Sikap ini menampak pada ketegaran membela fakta dan hasil temuan di lapangan atau pengembangan walaupun bertentangan atau tidak sesuai dengan teori yang ada.
g. Kreatif
Ilmuwan dalam mengembangkan ilmunya harus selalu kreatif agar terlihat lebih menarik.
3. Filsafat Ilmu Alamiah
Filosofis ilmu alamiah sebagai dasar pengembangan ilmu mengacu pada nilai yang berkembang sejalan dengan pola pikir manusia dalam bentuk budaya dan norma yang dianut dan menjadi pandangan hidup, untuk itu dibawah ini diuraikan beberapa dasar filsafat ilmu alamiah ;
a. Vitalisme, merupakan suatu doktrin yang menyatakan adanya kekuatan diluar alam. Kekuatan itu melikiki peranan yang esensial mengatur segala sesuatu yang terjadi di Alam semesta ini. (misalnya Tuhan). pendapat ini ditantang oleh beberapa orang lain karena dalam ilmu alamiah dikatakan bahwa segala sesuatunya harus dapat dianalisis secaras eksperimen. Atau harus cocok dengan metode ilmiah.
b. Mekanisme, penyebab segala gerakan di alam semesta ini dikarenakan hukum alam (misalnya fisika atau kimia). Faham ini menganggap bahwa gejala pada mahluk hidup secara otomatis terjadi hanya berdasar peristiwa fisika –kimia belaka. Pandangan ini menyamakan gejala pada mahluk hidup dengan gejala benda tidak hidup sehingga perbedaan hikiki tidak ada. Dengan begitu dapat menghayutkan manusia ke pandangan materialisme yang selanjutnya kepada Atheisme.
c. Agnotisme, untuk menghindari pertentangan vitalisme dan mekanisme maka aliran ini timbul, dimana aliran ini melepaskan atau tidak memperhatikan sisi dari sang pencipta. Mereka yang mengkuti aliran ini, hanya mempelajari gejala-gejala alam saja, aliran ini banyak dianut oleh ilmuwan Barat.
Filsafat Pancasila, paham yang menjembatani dari 2 aliran yang menyatakan bahwa alam dan hukumnya terjadi karena ciptaan tuhan dan proses selanjutnya menurut filsafat mekanisme (hukum alam). Hukum alam adalah itu adalah sama dengan hukum Tuhan.Dapat dilihat dari kehidupan makhluk hidup dari awal sampai akhir.
4. Keunggulan Ilmu Alamiah
Sebagaimana telah dijelaskan dimuka bahwa ilmu alamiah memiliki kriteria tersendiri berupa sitematis, objektif, metodik dan universal, dimana hal ini secara tidak langsung akan menumbuhkan sikap ilmiah yang sangat bermanfaat bagi manusia, dibawah ini dijelaskan beberapa keunggulan yang bermanfaat bagi manusia ;
a. Mencintai kebenaran yang obyektif dan bersikap adil, sehingga akan membawa pada hidup yang tenang dan bahagia.
b. Jika ada penemuan baru yang lebih benar, maka ilmu yang lama tidak berlaku lagi, sehingga disadari bahwa ilmu pengetahuan itu tidak mutlak atau bersifat relatif. Sedang yang mutlak datangnya dari sang pencipta .
c. Dengan ilmu pengetahuan orang tidak lagi percaya pada takhayul atau mitos, karena semua yang ada di alam ini terjadi melalui proses hukum alam atas izin sang pencipta.
d. Ilmu pengetahuan akan membimbing kita untuk tidak berpikir melalui prasangka, tetapi berpikir secara objektif, terbuka dan sistematis, suka menerima pendapat orang lain dalam setiap keputusannya.
5. Keterbatasan Ilmu Alamiah
Untuk itu perlu dilakukan pengujian sampai dimana berlakunya metode ilmiah dan dimana metode ilmiah tidak berlaku. Untuk itu kita perlu memperhatikan :
Pertama, Bidang ilmu Alamiah, yang menentukan bidang ilmu alamiah adalah metode ilmiah, karena bidang ilmu alamiah adalah wahana di mana metode ilmiah dapat diterapkan, sebaliknya bidang non ilmiah adalah wahana dimana metode ilmiah tidak dapat terapkan. Contoh hipotesa tentang keberadaan tuhan merupakan konsep yang tidak bisa menggunakan metode ilmiah dan apabila menggunakan konsep ini bisa menyebabkan orang Atheis.
Kedua, tujuan ilmu Alamiah, membentuk dan menggunakan teori. Ilmu alamiah hanya dapat mengemukakan bukti kebenaran sementara dengan kata lain untuk kebenaran sementara adalah “Teori”. Karena tidak ada sesuatu yang mutlak tetapi terus mengalami perubahan (contoh teori tentang bumi ini bulat)
Ketiga. Ilmu alamiah dan nilai, ilmu alamiah tidak menentukan moral atau nilai suatu keputusan . Manusia pemakain ilmu alamiahlah yang menilai apakah hasil Ilmu Alamiah baik atau sebaliknya. Contoh penemuan mesiu atau bom atom.
6. Cabang-Cabang Ilmu Pengetahuan
a. Ilmu Pengetahuan Alam
yang membahas tentang alam semesta dengan semua isinya dan selanjutnya terbagi atas:
i. Fisika, mempelajari benda tak hidup dari aspek wujud dengan perubahan yang bersifat sementara. Seperti : bunyi cahaya, gelombang magnet, teknik kelistrikan, teknik nuklir.
ii. Kimia, mempelajari benda hidup dan tak hidup dari aspek sususan materi dan perubahan yang bersifat tetap. Kimia secara garis besar dibagi kimia organik (protein, lemak) dan kimia anorganik (NaCl), hasil dari ilmu ini dapat diciptakan seperti plastik, bahan peledak.
iii. Biologi, yang mempelajari makhluk hidup dan gejala-gejalanya.
a) Botani, ilmu yang mempelajari tentang tumbuh-tumbuhan.
b) Zoologi, ilmu yang mempelajrai tentang hewan.
c) Morfologi, ilmu yang mempelajari tentang struktur luar makhluk hidup.
d) Anatomi suatu studi tentang struktur dalam atau bentuk dalam mahkhluk hidup.
e) Fisiologi studi tentang fungsi atau faal/organ bagian tubuh makhluk hidup.
f) Sitologi, ilmu yang mempelajari tentang sel secara mendalam.
g) Histologi studi tentang jaringan tubuh atau organ makhluk hidup yang merupakan serentetan sel sejenis.
h) Palaentologi studi tentang makhluk hidup masa lalu.
b. Ilmu Pengetahuan Sosial
yakni membahas hubungan antar manusia sebagai makhluk sosial, yang selanjutnya dibagi atas :
i. Psikologi, yang mepelajari proses mental dan tingkah laku.
ii. Pendidikan, proses latihan yang terarah dan sistematis menuju ke suatu tujuan.
iii. Antropologi, mempelajari asal usul dan perkembangan jasmani, sosial, kebudayaan dan tingkah laku sosial.
iv. Etnologi, cabang dari studi antropologi yang dilihat dari aspek sistem sosio-ekonomi dan pewarisan kebudayaan terutama keaslian budaya.
v. Sejarah, pencatatan peristiwa-persitiwa yang telah terjadi pada suatu bangsa. Negara atau individu.
vi. Ekonomi, yang berhubungan dengan produksi, tukar menukar barang. produksi, pengolahan dalam lingkup rumah tangga, negara atau perusahaan.
vii. Sosiologi, studi tentang tingkah laku sosial, terutama tentang asal usul organisasi, institusi, perkembangan masyarakat.
c. Ilmu Terapan
OLEH :
1. EZTRA WIRAWAN (F15112016)
2. FRANSISKA DESI SUSIATI (F15112001)
3. MARGARETA KIKI(F15112026)
4. RANDY RAMANDA PUTRA(F15112006)
Daftar Pustaka
HTTP://WWW.AGUSCHANDRA.COM/2010/10/ILMU-ALAMIAH-DASAR/
BROWSE:HOME EDUKASI ILMU ALAMIAH DASAR Published by Agus Chandra on October 15, 2010
http://zhuyavabel.blogspot.com/2012/04/sikap-sikap-ilmiah.html
http://stiemiftahulhuda.wordpress.com/modul-kuliah/ilmu-alamiah-dasar/
http://dara9.files.wordpress.com/2008/05/sikap-ilmiah.pdf
Kebenaran ilmu alamiah akan terlihat dari metode yang digunakan, jika sesuatu pengetahuan didapat melalui metode ilmiah maka pengetahuan itu dinyatakan ilmiah dan sebaliknya jika tidak melalui metode ilmiah maka pengetahuan itu dinyatakan tidak ilmiah, Sebagai langkah pemecahan atau prosedur ilmiah yaitu sebagai berikut :
a. Pengindraan
Pengindraan merupakan langkah awal yang penting dalam mengenali objek masalah, tetapi akurasi pengindraan tidak dapat dijadikan ajeg kebenaran karena pengaruh kondisi dan sifat pengindraan yang terbatas dalam mengenali objek, oleh karena itu perlu adanya pengulangan secara berkali-kali dan memerlukan waktu yang relatif lama, biasanya orang yang terlatih memiliki pengindraan yang tajam, seorang ahli musik memiliki pengindraan pendengaran yang sensitive sehingga peka terhadap kebenaran musik. Begitu pula ahli peneliti perlu terlatih dalam mengindra objek supaya tidak keliru, maka untuk itu agar pengindraan dapat ajeg, objektif perlu dibantu dengan alat indra buatan yang ditera akurasinya seperti termometer sebagai alat untuk mengukur suhu.
b. Masalah
Langkah selanjutnya setelah proses pengindraan terhadap suatu objek yang telah direnungkan terlebih dahulu adalah menentukan masalah hasil pengindraan, untuk mengetahui sesuatu itu menjadi masalah apabila objek itu mengandung pertanyaan, seperti pertanyaan apa ? bagaimana ? dan mengapa ? suatu objek itu begini atau begitu, tentu saja pertanyaan para ilmuwan akan berbeda dengan orang umum artinya pertanyaan itu harus terukur dan teruji sehingga akurasi jawabannya dapat dipertanggungjawabkan. Perlu ditegaskan bahwa pertanyaan yang dimaksud adalah mengandung objek yang jelas atau dapat diindra, bukan pertanyaan mengapa alam ini ada ? karena pertanyaan seperti ini bukan kajian ilmu alamiah.
c. Hipotesa / Hipotesis
Hipotesa atau dugaan sementara merupakan jawaban sementara dari pertanyaan masalah, untuk mengetahui apakah hipotesa itu benar perlu diuji dan eksperimen yang akurat dan didukung oleh data fakta yang kuat, bila ternyata fakta berbicara lain maka perlu disusun hipotesis baru. Biasanya ilmu membuat hipotesa terdiri dari dua klausal positif dan negatif yakni dua jawaban yang satu dengan lainnya saling bertolak belakang., diantara kedua hipotesa itu diharapkan salah satunya dapat didukung oleh data dan fakta hasil eksperimen maupun survei.
d. Eksperimen
Eksperimen merupakan pengujian terhadap hipotesa yang dilakukan untuk mendapatkan pengumpulan data atau fakta melalui kegiatan observasi langsung atau percobaan/eksperimental. Selanjutnya fakta-fakta itu dikumpulkan dan dianalisa apakah mendukung hipotesa yang diajukan atau tidak.
e. Penarikan Kesimpulan
Penarikan kesimpulan dilakukan berdasarkan atas penilaian melalui analisis terhadap fakta-fakta, untuk melihat apakah hipotesa itu yang diajukan itu diterima atau sebaliknya ditolak. Hipotesa yang diterima merupakan pengetahuan yang telah diuji kebenarannya dan sebagai bagian dari ilmu pengetahuan.
Dengan demikian ilmu pengetahuan itu disusun secara sistematis dengan menggunakan metoda tertentu dan diuji kebenarannya secara empiris dan berlaku secara universal.
2. Sikap-Sikap Ilmiah
Salah satu aspek tujuan mempelajari Ilmu alamiah dasatr ini adalah bagaimana menanamkan sikap ilmiah bagi mahasiswa, berikut ini di jelaskan beberapa sikap ilmiah yang harus dimilki oleh seorang ilmuan ;
a.Jujur
Sebagai ilmuan wajib melaporkan hasil pengamatannya secara objektif. Dalam kehidupan sehari-hari mungkin saja ia tidak jujur dari manusia lain, tetapi dalam hal penelitian ia harus sejujur-jujurnya dalam melaporkan penelitiannya hingga pelaporan harus disampaikan sejujur-jujurnya agar terbuka bagi peneliti lain bila dilakukan pengulangan.
b. Terbuka
Seorang ilmuan mempunyai pandangan luas , terbuka bebas dari praduga, ia tidak memperoleh buah pikirannya dari dugaan, ia akan terus mendapatkan kebenaran dengan prosedur ilmiah dan membuka diri bagi pihak lain untuk menguji dan mengkritik kebenarannya atau selalu menghargai kebenaran orang lain.
c. Toleran
Seorang ilmuwan tidak merasa bahwa dirinya paling benar, bahkan ia bersedia mengakui bahwa oprang lain mungkin lebih benar. Dalam menambah ilmu pengetahuan ia bersedia belajar dari orang lain, membandingkan pendapatnya dengan pendapat orang lain, ia memiliki tenggang rasa atau sikap toleran yang tinggi, jauih dari sikap angkuh.
d. Skeptis
Skeptis adalah sikap kehati-hatian dan kritis dalam memperoleh informasi, tidak sinis tetapi meragukan kebenaran informasi sebelum teruji yang didukung oleh data fakta yang kuat sehingga dalam membuat pernyataan, keputusan atau kesimpulan tidak keliru.
e. Optimis
Optimis adalah berpengharapan baik dalam menghadapai segala sesuatu, tidak putus- asa, dan ia selalu berkata “ Beri saya kesempatan untuk berpikir dan mencoba mengerjakannya” . Seorang yang memiliki kecerdasan optimis akan memiliki rasa humor yang tinggi. John Von Neuman memberi nama hasil karyanya dengan sebutan MANIAC ( sehingga membuat peserta seminar tertawa) padahal maniac itu istilah dari singkatan Mathematical Analyzer, Numerical Integrator and Computer.
f. Pemberani
Ilmuwan sebagai pencari kebenaran harus berani melawan semua kesalahan, penipuan, kepura-puraan, kemunafikan dan kebatilan yang akan
menghambat kemajuan. Sikap ini menampak pada ketegaran membela fakta dan hasil temuan di lapangan atau pengembangan walaupun bertentangan atau tidak sesuai dengan teori yang ada.
g. Kreatif
Ilmuwan dalam mengembangkan ilmunya harus selalu kreatif agar terlihat lebih menarik.
3. Filsafat Ilmu Alamiah
Filosofis ilmu alamiah sebagai dasar pengembangan ilmu mengacu pada nilai yang berkembang sejalan dengan pola pikir manusia dalam bentuk budaya dan norma yang dianut dan menjadi pandangan hidup, untuk itu dibawah ini diuraikan beberapa dasar filsafat ilmu alamiah ;
a. Vitalisme, merupakan suatu doktrin yang menyatakan adanya kekuatan diluar alam. Kekuatan itu melikiki peranan yang esensial mengatur segala sesuatu yang terjadi di Alam semesta ini. (misalnya Tuhan). pendapat ini ditantang oleh beberapa orang lain karena dalam ilmu alamiah dikatakan bahwa segala sesuatunya harus dapat dianalisis secaras eksperimen. Atau harus cocok dengan metode ilmiah.
b. Mekanisme, penyebab segala gerakan di alam semesta ini dikarenakan hukum alam (misalnya fisika atau kimia). Faham ini menganggap bahwa gejala pada mahluk hidup secara otomatis terjadi hanya berdasar peristiwa fisika –kimia belaka. Pandangan ini menyamakan gejala pada mahluk hidup dengan gejala benda tidak hidup sehingga perbedaan hikiki tidak ada. Dengan begitu dapat menghayutkan manusia ke pandangan materialisme yang selanjutnya kepada Atheisme.
c. Agnotisme, untuk menghindari pertentangan vitalisme dan mekanisme maka aliran ini timbul, dimana aliran ini melepaskan atau tidak memperhatikan sisi dari sang pencipta. Mereka yang mengkuti aliran ini, hanya mempelajari gejala-gejala alam saja, aliran ini banyak dianut oleh ilmuwan Barat.
Filsafat Pancasila, paham yang menjembatani dari 2 aliran yang menyatakan bahwa alam dan hukumnya terjadi karena ciptaan tuhan dan proses selanjutnya menurut filsafat mekanisme (hukum alam). Hukum alam adalah itu adalah sama dengan hukum Tuhan.Dapat dilihat dari kehidupan makhluk hidup dari awal sampai akhir.
4. Keunggulan Ilmu Alamiah
Sebagaimana telah dijelaskan dimuka bahwa ilmu alamiah memiliki kriteria tersendiri berupa sitematis, objektif, metodik dan universal, dimana hal ini secara tidak langsung akan menumbuhkan sikap ilmiah yang sangat bermanfaat bagi manusia, dibawah ini dijelaskan beberapa keunggulan yang bermanfaat bagi manusia ;
a. Mencintai kebenaran yang obyektif dan bersikap adil, sehingga akan membawa pada hidup yang tenang dan bahagia.
b. Jika ada penemuan baru yang lebih benar, maka ilmu yang lama tidak berlaku lagi, sehingga disadari bahwa ilmu pengetahuan itu tidak mutlak atau bersifat relatif. Sedang yang mutlak datangnya dari sang pencipta .
c. Dengan ilmu pengetahuan orang tidak lagi percaya pada takhayul atau mitos, karena semua yang ada di alam ini terjadi melalui proses hukum alam atas izin sang pencipta.
d. Ilmu pengetahuan akan membimbing kita untuk tidak berpikir melalui prasangka, tetapi berpikir secara objektif, terbuka dan sistematis, suka menerima pendapat orang lain dalam setiap keputusannya.
5. Keterbatasan Ilmu Alamiah
Untuk itu perlu dilakukan pengujian sampai dimana berlakunya metode ilmiah dan dimana metode ilmiah tidak berlaku. Untuk itu kita perlu memperhatikan :
Pertama, Bidang ilmu Alamiah, yang menentukan bidang ilmu alamiah adalah metode ilmiah, karena bidang ilmu alamiah adalah wahana di mana metode ilmiah dapat diterapkan, sebaliknya bidang non ilmiah adalah wahana dimana metode ilmiah tidak dapat terapkan. Contoh hipotesa tentang keberadaan tuhan merupakan konsep yang tidak bisa menggunakan metode ilmiah dan apabila menggunakan konsep ini bisa menyebabkan orang Atheis.
Kedua, tujuan ilmu Alamiah, membentuk dan menggunakan teori. Ilmu alamiah hanya dapat mengemukakan bukti kebenaran sementara dengan kata lain untuk kebenaran sementara adalah “Teori”. Karena tidak ada sesuatu yang mutlak tetapi terus mengalami perubahan (contoh teori tentang bumi ini bulat)
Ketiga. Ilmu alamiah dan nilai, ilmu alamiah tidak menentukan moral atau nilai suatu keputusan . Manusia pemakain ilmu alamiahlah yang menilai apakah hasil Ilmu Alamiah baik atau sebaliknya. Contoh penemuan mesiu atau bom atom.
6. Cabang-Cabang Ilmu Pengetahuan
a. Ilmu Pengetahuan Alam
yang membahas tentang alam semesta dengan semua isinya dan selanjutnya terbagi atas:
i. Fisika, mempelajari benda tak hidup dari aspek wujud dengan perubahan yang bersifat sementara. Seperti : bunyi cahaya, gelombang magnet, teknik kelistrikan, teknik nuklir.
ii. Kimia, mempelajari benda hidup dan tak hidup dari aspek sususan materi dan perubahan yang bersifat tetap. Kimia secara garis besar dibagi kimia organik (protein, lemak) dan kimia anorganik (NaCl), hasil dari ilmu ini dapat diciptakan seperti plastik, bahan peledak.
iii. Biologi, yang mempelajari makhluk hidup dan gejala-gejalanya.
a) Botani, ilmu yang mempelajari tentang tumbuh-tumbuhan.
b) Zoologi, ilmu yang mempelajrai tentang hewan.
c) Morfologi, ilmu yang mempelajari tentang struktur luar makhluk hidup.
d) Anatomi suatu studi tentang struktur dalam atau bentuk dalam mahkhluk hidup.
e) Fisiologi studi tentang fungsi atau faal/organ bagian tubuh makhluk hidup.
f) Sitologi, ilmu yang mempelajari tentang sel secara mendalam.
g) Histologi studi tentang jaringan tubuh atau organ makhluk hidup yang merupakan serentetan sel sejenis.
h) Palaentologi studi tentang makhluk hidup masa lalu.
b. Ilmu Pengetahuan Sosial
yakni membahas hubungan antar manusia sebagai makhluk sosial, yang selanjutnya dibagi atas :
i. Psikologi, yang mepelajari proses mental dan tingkah laku.
ii. Pendidikan, proses latihan yang terarah dan sistematis menuju ke suatu tujuan.
iii. Antropologi, mempelajari asal usul dan perkembangan jasmani, sosial, kebudayaan dan tingkah laku sosial.
iv. Etnologi, cabang dari studi antropologi yang dilihat dari aspek sistem sosio-ekonomi dan pewarisan kebudayaan terutama keaslian budaya.
v. Sejarah, pencatatan peristiwa-persitiwa yang telah terjadi pada suatu bangsa. Negara atau individu.
vi. Ekonomi, yang berhubungan dengan produksi, tukar menukar barang. produksi, pengolahan dalam lingkup rumah tangga, negara atau perusahaan.
vii. Sosiologi, studi tentang tingkah laku sosial, terutama tentang asal usul organisasi, institusi, perkembangan masyarakat.
c. Ilmu Terapan
OLEH :
1. EZTRA WIRAWAN (F15112016)
2. FRANSISKA DESI SUSIATI (F15112001)
3. MARGARETA KIKI(F15112026)
4. RANDY RAMANDA PUTRA(F15112006)
Daftar Pustaka
HTTP://WWW.AGUSCHANDRA.COM/2010/10/ILMU-ALAMIAH-DASAR/
BROWSE:HOME EDUKASI ILMU ALAMIAH DASAR Published by Agus Chandra on October 15, 2010
http://zhuyavabel.blogspot.com/2012/04/sikap-sikap-ilmiah.html
http://stiemiftahulhuda.wordpress.com/modul-kuliah/ilmu-alamiah-dasar/
http://dara9.files.wordpress.com/2008/05/sikap-ilmiah.pdf
PENGETAHUAN
Pengetahuan adalah informasi atau maklumat yang diketahui atau disadari oleh seseorang. Pengetahuan tidak dibatasi pada deskripsi, hipotesis, konsep, teori, prinsip dan prosedur yang secara benar atau berguna.
Dalam pengertian lain, pengetahuan adalah berbagai gejala yang ditemui dan diperoleh manusia melalui pengamatan akal. Pengetahuan muncul ketika seseorang menggunakan akal budinya untuk mengenali benda atau kejadian tertentu yang belum pernah dilihat atau dirasakan sebelumnya. Misalnya ketika seseorang mencicipi masakan yang baru dikenalnya, ia akan mendapatkan pengetahuan tentang bentuk, rasa, dan aroma masakan tersebut.
Pengetahuan yang lebih menekankan pengamatan dan pengalaman inderawi dikenal sebagai pengetahuan empiris atau pengetahuan aposteriori. Pengetahuan ini bisa didapatkan dengan melakukan pengamatan dan pengamatan yang dilakukan secara empiris dan rasional. Pengetahuan empiris tersebut juga dapat berkembang menjadi pengetahuan deskriptif bila seseorang dapat melukiskan dan menggambarkan segala ciri, sifat, dan gejala yang ada pada objek empiris tersebut. Pengetahuan empiris juga bisa didapatkan melalui pengalaman pribadi manusia yang terjadi berulangkali. Misalnya, seseorang yang sering dipilih untuk memimpin organisasi dengan sendirinya akan mendapatkan pengetahuan tentang manajemen organisasi.
Pengetahuan adalah keseluruhan pemikiran, gagasan, ide, konsep, dan pemahaman yang dimiliki manusia tentang dunia dan segala isinya, termasuk manusia itu sendiri dan kehidupanya. Sementara sumber-sumber pengetahuan adalah berasal dari tahu akan suatu peristiwa dan realitas objektif di alam semesta ini, dan tahu adalah hasil daripada kenal,sadar, insaf, mengerti dan pandai.
Pengetahuan mencakup penalaran, penjelasan tentang manusia mengetahui sesuatu, juga mencakup praktek atau kemampuan teknis dalam memecahkan berbagai persoalan hidup yang belum dibakukan secara sistematis dan metodis.
KRITERIA ILMIAH
a. Kebenaran Ilmiah
Suatu pengetahuan dinyatakan ilmiah apabila dapat memenuhi kriteria sebagai berikut ;
• Sistematis
• Berobjek
• Bermetoda
• Universal
Kebenaran pengetahuan ilmiah harus bersifat sistematis yakni bertautan dan memiliki hubungan kebanaran yang saling mendukung dengan pengetahuan lainnya (tidak berdiri sendiri ) dan memiliki langkah yang tersusun dalam menemukannya, disamping itu kajian ilmu harus memiliki objek yang jelas karena pada hakekatnya pengetahuan ilmiah itu adalah bertujuan dalam justifikasi objek melalui metoda ilmiah (scientific methode) yang operasional terarah dan terukur dan mengandung fakta kongkrit sehingga menghasilkan kebenaran yang bersifat universal yakni berlaku secara menyuluruh.
Kebenaran ilmu alamiah akan terlihat dari metoda yang digunakan, jika sesuatu pengetahuan didapat melalui metoda ilmiah maka pengetahuan itu dinyatakan ilmiah dan sebaliknya jika tidak melalui metoda ilmiah maka pengetahuan itu dinyatakan tidak ilmiah, lebih lanjut di bawah ini dijelaskan prosedur dan langkah-langkah methoda ilmiah.
b. Kebenaran Non Ilmiah
Perlu dikemukakan pula bahwa disamping adanya kriteria ilmiah yang mampu menghasilkan kebenaran ilmiah, juga adapula kriteria kebenaran yang sifatnya non ilmiah, yakni ;
• Perasaan
• Intuitif
• Trial and error
Perasaan merupakan salah satu cara untuk menarik kesimpulan yang tidak berdasarkan nalar tentu saja hal ini akan bersifat subjektif karena perasaan setiap orang satu dengan lainnya memiliki sensitifitas yang berbeda.
Sedangkan instuisi merupakan kegiatan berpikir yang tidak analistis, tidak berdasarkan pola berpikir tertentu, pendapat yang berdasar intuisi timbul dari pengetahuan-pengetahuannya yang terdahulu melalui proses berpikir yang tidak disadari. Seolah-olah pendapat itu muncul begitu saja tanpa dipikir terlebih dahulu. Setiap orang memiliki kepekaan dan ketajaman intuitif yang tingkatnya berbeda-beda, mungkin orang yang terlatih intuisinya akan memeiliki kepekaan yang tinggi dan memungkinkan intuisinya dapat mendekati kebenaran atau sebaliknya bagi orang yang memiliki kepekaan dan ketajaman intuisi yang rendah.
Sementara kebenaran dengan kriteria trial and error sekalipun tingkat kebenaran lebih maju dibanding prasangka dan intuitif, tetapi pendekatan ini dipandang tidak efesien karena cara untuk memperoleh pengetahuan melalui coba-coba atau untung-untungan dan lebih cenderung error daripada berhasil.
KELAHIRAN ILMU ALAMIAH
Ilmu alamiah sebagai hasil perkembangan pola pikir manusia yang terakumulasi dari hasil pengamatan dan pengalaman telah mendorong manusia untuk melahirkan pendekatan kebenaran yang tidak hanya mengandalkan kemampuan rasio belaka, dorongan tersebut setidaknya terdiri dari dua sisi ; yakni
a. dorongan pertama adalah dorongan untuk memuaskan diri sendiri yang sifatnya non praktis atau teritis guna memenuhi kuriositas dan memahami tentang hakikat alam semesta dan segala isinya, yang selanjutnya melahirkan pure science ( Ilmu pengetahuan murni ).
b. dorongan yang kedua adalah dorongan yang sifatnya praktis, dimana ilmu pengetahuan dimanfaatkan untuk meningkatkan tarap hidup yang lebih tinggi, dan selanjutnya disebut dengan Applied science ( Ilmu pengetahuan terapan/teknologi).
Kapan ilmu pengetahuan (sains) lahir ? secara waktu mungkin sulit untuk ditetapkan tetapi yang jelas sesuatu dinyatakan pengetahuan sains adalah apabila pendekatan kebenaran tertumpu pada rational approach dan empiric approach ;
1. Pendekatan Rasional ( rational approach ) yaitu pendekatan yang berupaya merumuskan kebenaran berdasarkan kajian data yang diperoleh dari berbagai hal yang mudah dimengerti dan difahami
2. Pendekatan Empiris ( empiric approach ) yaitu pendekatan yang berupaya merumuskan kebenaran berdasarkan fakta yang diperoleh dan dibuktikan melalui peralatan ilmiah.
Jadi kebenaran sains yakni kebenaran yang secara rasional dapat dimengerti dan difahami serta dibuktikan secara fakta dan menggunakan peralatan ilmiah. Pendekatan semacam itu sebenarnya sudah dilakukan pada masa filosuf muslim di Persia dengan bukti munculnya ilmu-ilmu terapan seperti ilmu perbintangan, ilmu kimia dan ilmu kedokteran, tetapi kebenaran ini tidak deklarasikan oleh ilmuwan barat, mereka mengklaim bahwa kelahiran ilmu pengetahuan sains (ilmiah) adalah setelah ditemukannya teropong bintang (sekalipun sejak masa filsafat muslim teleskop sudah ada ) yang mampu membuktikan kebenaran teori Heliosentris Copernicus. Memang sejak penemuan teleskop telah banyak membantu para ilmuan untuk dapat membuktikan secara empiric terhadap konsep-konsepnya.
Berikut ini dijelaskan beberapa ilmuan yang telah menancapkan tonggak sejaran perkembangan ilmiah ;
Nikolas Copernicus (1473 – 1543 M) Ia seorang astronom, matematika dan pengobatan, Tulisannya yang terkenal dan merombak pandangan Yunani yang berjudul De Revolutionibus Orbium Caelestium ( Peredaran alam semesta) buku ini ditulis pada tahun 1507 M tetapi tidak segera dideklarasikan karena konsepnya bertentangan dengan konsep lama yang sudah mendapat justifikasi dari penguasa. Pokok-pokok ajarannya sebagai berikut ;
• Matahari adalah pusat dari system solar, dimana system itu bumi adalah salah satu planet diantara planet-planet lain yang beredar mengelilingi matahari.
• Bulan beredar mengelilingi bumi dan bersama bumi mengelilingi matahari.
• Bumi berputar pada porosnya dari barat ke timur yang mengakibatkan adanya siang dan malam dan pandangan gerakan bintang-bintang.
Pengikut Copernicus adalah Bruno (1548 – 1600 M) memperoleh kesimpulan lebih jauh lagi, yaitu ;
• Jagat raya ini tidak ada batasnya
• Bintang-bintang tersebar di seluruh jagat raya
Karena keberaniaannya mendeklarasikan pendapatnya yang bertentangan dengan keyakinan penguasa pada itu maka Bruno dianggap sebagai orang yang kemasukan setan (kesurupan) dan dihukum dengan cara dibakar hidup-hidup hingga mati.
Ahli astronomi lainnya dalah Johannes Kepler (1571 – 1630 M ) Pokok-pokok pikirannya adalah :
• Planet-planet beredar mengelilingi matahari pada suatu garis edar yang berbentuk elips dengan suatu focus
• Bila ditarik garis imajinasi dari planet ke matahari dan sementara itu ia bergerak menurut
• garis edarnya, maka luas bidang yang ditempuh pada jangka waktu yang sama adalah sama.
• Pangkat dua dari waktu yang dibutuhkan sebuah planet mengelilingi matahari secara penuh adalah sebanding dengan pangkat tiga dari jarak rata-rata planet itu terhadap matahari.
Konsep-konsep diatas dibenarkan oleh Galileo Galilei (1564 –1642 M) dengan menggunakan teleskopnya yang terbesar mampu melihat tatasurya dan mengumumkan hasil penemuannya bahwa teori Geosentri dianggap salah dan yang benar adalah teori Heliosentris sebagaimana dikemukakan oleh Copernicus dan Kepler sekalipun bertentangan dengan pendapat penguasa yang mempertahan teori geosentris dan menganggap suci bumi dan menjadi pusat tatasurya sebagai tempat singgasana para raja.
disusun oleh
JANNATUL MA’WA
MARIA LIFENSIA
RESEYCA
SUGIARTI
TIAR PRASETIA
Daftar Pustaka
http://edukasi.kompasiana.com/2011/11/07/menulislah-karangan-ilmiah
http://blathunk.blogspot.com/2012/09/ilmu-alamiah-dasar.html
http://ardiq.blogspot.com/2012/07/ilmu-alamiah-dasar.html
http://www.aguschandra.com/2010/10/ilmu-alamiah-dasar/
Dalam pengertian lain, pengetahuan adalah berbagai gejala yang ditemui dan diperoleh manusia melalui pengamatan akal. Pengetahuan muncul ketika seseorang menggunakan akal budinya untuk mengenali benda atau kejadian tertentu yang belum pernah dilihat atau dirasakan sebelumnya. Misalnya ketika seseorang mencicipi masakan yang baru dikenalnya, ia akan mendapatkan pengetahuan tentang bentuk, rasa, dan aroma masakan tersebut.
Pengetahuan yang lebih menekankan pengamatan dan pengalaman inderawi dikenal sebagai pengetahuan empiris atau pengetahuan aposteriori. Pengetahuan ini bisa didapatkan dengan melakukan pengamatan dan pengamatan yang dilakukan secara empiris dan rasional. Pengetahuan empiris tersebut juga dapat berkembang menjadi pengetahuan deskriptif bila seseorang dapat melukiskan dan menggambarkan segala ciri, sifat, dan gejala yang ada pada objek empiris tersebut. Pengetahuan empiris juga bisa didapatkan melalui pengalaman pribadi manusia yang terjadi berulangkali. Misalnya, seseorang yang sering dipilih untuk memimpin organisasi dengan sendirinya akan mendapatkan pengetahuan tentang manajemen organisasi.
Pengetahuan adalah keseluruhan pemikiran, gagasan, ide, konsep, dan pemahaman yang dimiliki manusia tentang dunia dan segala isinya, termasuk manusia itu sendiri dan kehidupanya. Sementara sumber-sumber pengetahuan adalah berasal dari tahu akan suatu peristiwa dan realitas objektif di alam semesta ini, dan tahu adalah hasil daripada kenal,sadar, insaf, mengerti dan pandai.
Pengetahuan mencakup penalaran, penjelasan tentang manusia mengetahui sesuatu, juga mencakup praktek atau kemampuan teknis dalam memecahkan berbagai persoalan hidup yang belum dibakukan secara sistematis dan metodis.
KRITERIA ILMIAH
a. Kebenaran Ilmiah
Suatu pengetahuan dinyatakan ilmiah apabila dapat memenuhi kriteria sebagai berikut ;
• Sistematis
• Berobjek
• Bermetoda
• Universal
Kebenaran pengetahuan ilmiah harus bersifat sistematis yakni bertautan dan memiliki hubungan kebanaran yang saling mendukung dengan pengetahuan lainnya (tidak berdiri sendiri ) dan memiliki langkah yang tersusun dalam menemukannya, disamping itu kajian ilmu harus memiliki objek yang jelas karena pada hakekatnya pengetahuan ilmiah itu adalah bertujuan dalam justifikasi objek melalui metoda ilmiah (scientific methode) yang operasional terarah dan terukur dan mengandung fakta kongkrit sehingga menghasilkan kebenaran yang bersifat universal yakni berlaku secara menyuluruh.
Kebenaran ilmu alamiah akan terlihat dari metoda yang digunakan, jika sesuatu pengetahuan didapat melalui metoda ilmiah maka pengetahuan itu dinyatakan ilmiah dan sebaliknya jika tidak melalui metoda ilmiah maka pengetahuan itu dinyatakan tidak ilmiah, lebih lanjut di bawah ini dijelaskan prosedur dan langkah-langkah methoda ilmiah.
b. Kebenaran Non Ilmiah
Perlu dikemukakan pula bahwa disamping adanya kriteria ilmiah yang mampu menghasilkan kebenaran ilmiah, juga adapula kriteria kebenaran yang sifatnya non ilmiah, yakni ;
• Perasaan
• Intuitif
• Trial and error
Perasaan merupakan salah satu cara untuk menarik kesimpulan yang tidak berdasarkan nalar tentu saja hal ini akan bersifat subjektif karena perasaan setiap orang satu dengan lainnya memiliki sensitifitas yang berbeda.
Sedangkan instuisi merupakan kegiatan berpikir yang tidak analistis, tidak berdasarkan pola berpikir tertentu, pendapat yang berdasar intuisi timbul dari pengetahuan-pengetahuannya yang terdahulu melalui proses berpikir yang tidak disadari. Seolah-olah pendapat itu muncul begitu saja tanpa dipikir terlebih dahulu. Setiap orang memiliki kepekaan dan ketajaman intuitif yang tingkatnya berbeda-beda, mungkin orang yang terlatih intuisinya akan memeiliki kepekaan yang tinggi dan memungkinkan intuisinya dapat mendekati kebenaran atau sebaliknya bagi orang yang memiliki kepekaan dan ketajaman intuisi yang rendah.
Sementara kebenaran dengan kriteria trial and error sekalipun tingkat kebenaran lebih maju dibanding prasangka dan intuitif, tetapi pendekatan ini dipandang tidak efesien karena cara untuk memperoleh pengetahuan melalui coba-coba atau untung-untungan dan lebih cenderung error daripada berhasil.
KELAHIRAN ILMU ALAMIAH
Ilmu alamiah sebagai hasil perkembangan pola pikir manusia yang terakumulasi dari hasil pengamatan dan pengalaman telah mendorong manusia untuk melahirkan pendekatan kebenaran yang tidak hanya mengandalkan kemampuan rasio belaka, dorongan tersebut setidaknya terdiri dari dua sisi ; yakni
a. dorongan pertama adalah dorongan untuk memuaskan diri sendiri yang sifatnya non praktis atau teritis guna memenuhi kuriositas dan memahami tentang hakikat alam semesta dan segala isinya, yang selanjutnya melahirkan pure science ( Ilmu pengetahuan murni ).
b. dorongan yang kedua adalah dorongan yang sifatnya praktis, dimana ilmu pengetahuan dimanfaatkan untuk meningkatkan tarap hidup yang lebih tinggi, dan selanjutnya disebut dengan Applied science ( Ilmu pengetahuan terapan/teknologi).
Kapan ilmu pengetahuan (sains) lahir ? secara waktu mungkin sulit untuk ditetapkan tetapi yang jelas sesuatu dinyatakan pengetahuan sains adalah apabila pendekatan kebenaran tertumpu pada rational approach dan empiric approach ;
1. Pendekatan Rasional ( rational approach ) yaitu pendekatan yang berupaya merumuskan kebenaran berdasarkan kajian data yang diperoleh dari berbagai hal yang mudah dimengerti dan difahami
2. Pendekatan Empiris ( empiric approach ) yaitu pendekatan yang berupaya merumuskan kebenaran berdasarkan fakta yang diperoleh dan dibuktikan melalui peralatan ilmiah.
Jadi kebenaran sains yakni kebenaran yang secara rasional dapat dimengerti dan difahami serta dibuktikan secara fakta dan menggunakan peralatan ilmiah. Pendekatan semacam itu sebenarnya sudah dilakukan pada masa filosuf muslim di Persia dengan bukti munculnya ilmu-ilmu terapan seperti ilmu perbintangan, ilmu kimia dan ilmu kedokteran, tetapi kebenaran ini tidak deklarasikan oleh ilmuwan barat, mereka mengklaim bahwa kelahiran ilmu pengetahuan sains (ilmiah) adalah setelah ditemukannya teropong bintang (sekalipun sejak masa filsafat muslim teleskop sudah ada ) yang mampu membuktikan kebenaran teori Heliosentris Copernicus. Memang sejak penemuan teleskop telah banyak membantu para ilmuan untuk dapat membuktikan secara empiric terhadap konsep-konsepnya.
Berikut ini dijelaskan beberapa ilmuan yang telah menancapkan tonggak sejaran perkembangan ilmiah ;
Nikolas Copernicus (1473 – 1543 M) Ia seorang astronom, matematika dan pengobatan, Tulisannya yang terkenal dan merombak pandangan Yunani yang berjudul De Revolutionibus Orbium Caelestium ( Peredaran alam semesta) buku ini ditulis pada tahun 1507 M tetapi tidak segera dideklarasikan karena konsepnya bertentangan dengan konsep lama yang sudah mendapat justifikasi dari penguasa. Pokok-pokok ajarannya sebagai berikut ;
• Matahari adalah pusat dari system solar, dimana system itu bumi adalah salah satu planet diantara planet-planet lain yang beredar mengelilingi matahari.
• Bulan beredar mengelilingi bumi dan bersama bumi mengelilingi matahari.
• Bumi berputar pada porosnya dari barat ke timur yang mengakibatkan adanya siang dan malam dan pandangan gerakan bintang-bintang.
Pengikut Copernicus adalah Bruno (1548 – 1600 M) memperoleh kesimpulan lebih jauh lagi, yaitu ;
• Jagat raya ini tidak ada batasnya
• Bintang-bintang tersebar di seluruh jagat raya
Karena keberaniaannya mendeklarasikan pendapatnya yang bertentangan dengan keyakinan penguasa pada itu maka Bruno dianggap sebagai orang yang kemasukan setan (kesurupan) dan dihukum dengan cara dibakar hidup-hidup hingga mati.
Ahli astronomi lainnya dalah Johannes Kepler (1571 – 1630 M ) Pokok-pokok pikirannya adalah :
• Planet-planet beredar mengelilingi matahari pada suatu garis edar yang berbentuk elips dengan suatu focus
• Bila ditarik garis imajinasi dari planet ke matahari dan sementara itu ia bergerak menurut
• garis edarnya, maka luas bidang yang ditempuh pada jangka waktu yang sama adalah sama.
• Pangkat dua dari waktu yang dibutuhkan sebuah planet mengelilingi matahari secara penuh adalah sebanding dengan pangkat tiga dari jarak rata-rata planet itu terhadap matahari.
Konsep-konsep diatas dibenarkan oleh Galileo Galilei (1564 –1642 M) dengan menggunakan teleskopnya yang terbesar mampu melihat tatasurya dan mengumumkan hasil penemuannya bahwa teori Geosentri dianggap salah dan yang benar adalah teori Heliosentris sebagaimana dikemukakan oleh Copernicus dan Kepler sekalipun bertentangan dengan pendapat penguasa yang mempertahan teori geosentris dan menganggap suci bumi dan menjadi pusat tatasurya sebagai tempat singgasana para raja.
disusun oleh
JANNATUL MA’WA
MARIA LIFENSIA
RESEYCA
SUGIARTI
TIAR PRASETIA
Daftar Pustaka
http://edukasi.kompasiana.com/2011/11/07/menulislah-karangan-ilmiah
http://blathunk.blogspot.com/2012/09/ilmu-alamiah-dasar.html
http://ardiq.blogspot.com/2012/07/ilmu-alamiah-dasar.html
http://www.aguschandra.com/2010/10/ilmu-alamiah-dasar/
Langganan:
Postingan (Atom)